1887

Abstract

A moderately halophilic, obligate alkaliphile (growth range pH 8–12), designated strain YN-1, was isolated from indigo balls obtained from Ibaraki, Japan. The cells of the isolate stained Gram-positive, and were aerobic, non-motile, sporulating rods which grew optimally at pH 9. The strain grew in 3–14 % NaCl with optimum growth in 5 % NaCl. It hydrolysed casein and Tweens 20, 40 and 60, but not gelatin, starch, DNA or pullulan. Its major isoprenoid quinone was MK-7 and its cellular fatty acid profile mainly consisted of anteiso-C, anteiso-C and anteiso-C. 16S rRNA phylogeny suggested that strain YN-1 was a member of group 7 (alkaliphiles) of the genus , with the closest relative being DSM 8720 (similarity 99.5 %). However, DNA–DNA hybridization showed a low DNA–DNA relatedness (7 %) of strain YN-1 with . DSM 8720. Owing to the significant differences in phenotypic and chemotaxonomic characteristics, and phylogenetic and DNA–DNA relatedness data, the isolate merits classification as a new species, for which the name is proposed. The type strain of this species is YN-1 (=JCM 14604=NCIMB 14282).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65193-0
2008-01-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/1/120.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65193-0&mimeType=html&fmt=ahah

References

  1. Aono, R. & Horikoshi, K. ( 1983; ). Chemical composition of cell walls of alkalophilic strains of Bacillus. J Gen Microbiol 129, 1083–1087.
    [Google Scholar]
  2. Aono, R., Ito, M. & Machida, T. ( 1999; ). Contribution of the cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J Bacteriol 181, 6600–6606.
    [Google Scholar]
  3. Barrow, G. I. & Feltham, R. K. A. ( 1993; ). Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press.
  4. Clejan, S., Krulwich, T. A., Mondrus, K. R. & Seto-Yung, D. ( 1986; ). Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J Bacteriol 168, 334–340.
    [Google Scholar]
  5. Duckworth, A. W., Grant, W. D., Jones, B. E. & van Steenbergen, R. ( 1996; ). Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19, 181–191.[CrossRef]
    [Google Scholar]
  6. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  8. Goto, T., Matsuno, T., Hishinuma-Narisawa, M., Yamazaki, K., Matsuyama, H., Inoue, N. & Yumoto, I. ( 2005; ). Cytochrome c and bioenergetic hypothetical model for alkaliphilic Bacillus spp. J Biosci Bioeng 100, 365–379.[CrossRef]
    [Google Scholar]
  9. Hamasaki, N., Shirai, S., Niitsu, M., Kakinuma, K. & Oshima, T. ( 1993; ). An alkalophilic Bacillus sp. produces 2-phenylethylamine. Appl Environ Microbiol 59, 2720–2722.
    [Google Scholar]
  10. Higashibata, A., Fujiwara, T. & Fukumori, Y. ( 1998; ). Studies on the respiratory system in alkaliphilic Bacillus; a proposed new respiratory mechanism. Extremophiles 2, 83–92.[CrossRef]
    [Google Scholar]
  11. Hirota, N. & Imae, Y. ( 1983; ). Na+-driven flagella motors of an alkalophilic Bacillus strain YN-1. J Biol Chem 258, 10577–10581.
    [Google Scholar]
  12. Horikoshi, K. ( 1991; ). Microorganisms in Alkaline Environments. Weinheim: VCH.
  13. Hugh, R. & Leifson, E. ( 1953; ). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J Bacteriol 66, 24–26.
    [Google Scholar]
  14. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  15. Kitazume, Y., Mutoh, M., Shiraki, M. & Koyama, N. ( 2006; ). Involvement of Lys-308 in the FAD-dependent oxidase activity of NADH dehydrogenase from an alkaliphilic Bacillus. Res Microbiol 157, 956–959.[CrossRef]
    [Google Scholar]
  16. Krulwich, T. A., Hicks, D. B., Swartz, T. H. & Ito, M. ( 2007; ). Bioenergetic adaptations that support alkaliphily. In Physiology and Biochemistry of Extremophiles, pp. 311–329. Edited by C. Gerday & N. Glansdorff. Washington, DC: American Society for Microbiology.
  17. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  18. Nielsen, P., Rainey, F. A., Ottrup, H., Priest, F. G. & Fritze, D. ( 1994; ). Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus. FEMS Microbiol Lett 117, 61–66.[CrossRef]
    [Google Scholar]
  19. Nielsen, P., Fritze, D. & Priest, F. G. ( 1995; ). Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141, 1745–1761.[CrossRef]
    [Google Scholar]
  20. Nogi, Y., Takami, H. & Horikoshi, K. ( 2005; ). Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 55, 2307–2315.
    [Google Scholar]
  21. Ota, K., Kiyomiya, A., Koyama, N. & Nosoh, Y. ( 1975; ). The basis of the alkalophilic property of a species of Bacillus. J Gen Microbiol 86, 259–266.[CrossRef]
    [Google Scholar]
  22. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  23. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  24. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: Molecular evolutionary Genetic Analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  25. Teather, R. M. & Wood, P. J. ( 1982; ). Use of Congo red polysaccharide interaction in enumeration of cellulolytic bacteria from bovine rumen. Appl Environ Microbiol 43, 777–780.
    [Google Scholar]
  26. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  27. Thongaram, T., Kosono, S., Ohkuma, M., Hongoh, Y., Kitada, M., Yoshinoka, T., Trakulnaleamsai, S., Noparatnaraporn, N. & Kudo, T. ( 2003; ). Gut of higher termites as a niche for alkaliphiles as shown by culture-based and culture-independent studies. Microbes Environ 18, 152–159.[CrossRef]
    [Google Scholar]
  28. Xu, X., Koyama, N., Cui, M., Yamagishi, A., Nosoh, Y. & Oshima, T. ( 1991; ). Nucleotide sequence of the gene encoding NADH dehydrogenase from an alkalophile, Bacillus sp. strain YN-1. J Biochem (Tokyo) 109, 678–683.
    [Google Scholar]
  29. Yumoto, I. ( 2007; ). Environmental and taxonomic biodiversities of Gram-positive alkaliphiles. In Physiology and Biochemistry of Extremophiles, pp. 295–310. Edited by C. Gerday & N. Glansdorff. Washington, DC: American Society for Microbiology.
  30. Yumoto, I., Nakajima, K. & Ikeda, K. ( 1997; ). Comparative study on cytochrome content of alkaliphilic Bacillus strains. J Ferment Bioeng 83, 466–469.[CrossRef]
    [Google Scholar]
  31. Yumoto, I., Yamazaki, K., Sawabe, T., Nakano, K., Kawasaki, K., Ezura, Y. & Shinano, H. ( 1998; ). Bacillus horti sp. nov., a new Gram-negative alkaliphilic bacillus. Int J Syst Bacteriol 48, 565–571.[CrossRef]
    [Google Scholar]
  32. Yumoto, I., Yamazaki, K., Hishinuma, M., Nodasaka, Y., Suemori, A., Nakajima, K., Inoue, N. & Kawasaki, K. ( 2001; ). Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51, 349–355.
    [Google Scholar]
  33. Yumoto, I., Hirota, K., Goto, T., Nodasaka, Y. & Nakajima, K. ( 2005; ). Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile. Int J Syst Evol Microbiol 55, 907–911.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65193-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65193-0
Loading

Data & Media loading...

Supplements

Maximum-parsimony phylogenetic tree constructed on the basis of 16S rRNA gene sequence data of strain YN-1 and other related organisms. Bootstrap percentages (based on 1000 replicates) are shown at branch points. Bar, 10 changes per nucleotide position.

IMAGE

Minimum-evolution phylogenetic tree constructed on the basis of 16S rRNA gene sequence data of strain YN-1 and other related organisms. Bootstrap percentages (based on 1000 replicates) are shown at branch points. Bar, 0.01 changes per nucleotide position.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error