1887

Abstract

A study was conducted to determine the taxonomic status of six actinomycete strains isolated from root nodules of . The strains were filamentous, Gram-positive and produced single spores at the tip of the hyphae. Phylogenetic, chemotaxonomic and morphological analyses demonstrated that all six strains belonged to the genus . According to the 16S rRNA gene sequence data, the strains were divided into two clusters that are moderately related to , and . Fatty acid patterns also supported the division of the strains, and significant differences between the two groups were found in the amounts of iso-15 : 0, iso-16 : 0, iso-16 : 1 and iso-17 : 0. Furthermore, the two groups showed physiological differences which included utilization of arabinose, trehalose, alanine and sucrose and xylan hydrolysis. Finally, DNA–DNA hybridization and ribotyping studies confirmed that each group represents a novel species. Based on the genotypic and phenotypic data, the novel species sp. nov. (type strain Lupac 14N =DSM 44874 =LMG 24055) and sp. nov. (type strain Lupac 09 =DSM 44871 =LMG 24056) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65192-0
2007-12-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/12/2799.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65192-0&mimeType=html&fmt=ahah

References

  1. Ara, I. & Kudo, T. ( 2007; ). Two new species of the genus Micromonospora: Micromonospora chokoriensis sp. nov. and Micromonospora coxensis sp. nov., isolated from sandy soil. J Gen Appl Microbiol 53, 29–37.[CrossRef]
    [Google Scholar]
  2. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  3. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y.-W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  4. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  5. Doetsch, R. N. ( 1981; ). Determinative methods of light microscopy. In Manual of Methods for General Bacteriology, pp. 21–33. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  6. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  7. Hasegawa, T., Takizawa, M. & Tanida, S. ( 1983; ). A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29, 319–322.[CrossRef]
    [Google Scholar]
  8. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  9. Jones, K. L. ( 1949; ). Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57, 141–145.
    [Google Scholar]
  10. Kawamoto, I. ( 1989; ). Genus Micromonospora Ørskov 1923, 147AL. In Bergey's Manual of Systematic Bacteriology, vol. 4, pp. 2442–2450. Edited by S. T. Williams, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  11. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  12. Kroppenstedt, R. M. ( 1985; ). Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series vol. 20), pp. 173–199. Edited by M. Goodfellow & D. E. Minnikin. New York: Academic Press.
  13. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  14. Lechevalier, M. P. & Lechevalier, H. A. ( 1970; ). Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20, 435–443.[CrossRef]
    [Google Scholar]
  15. Lechevalier, M. P., De Bièvre, C. & Lechevalier, H. A. ( 1977; ). Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5, 249–260.[CrossRef]
    [Google Scholar]
  16. Maldonado, L. A., Stach, J. E. M., Pathom-aree, W., Ward, A. C., Bull, A. T. & Goodfellow, M. ( 2005; ). Diversity of cultivable actinobacteria in geographically widespread marine sediments. Antonie van Leeuwenhoek 87, 11–18.[CrossRef]
    [Google Scholar]
  17. Mandel, M. & Marmur, J. ( 1968; ). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B, 195–206.
    [Google Scholar]
  18. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A. & Parlett, J. H. ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef]
    [Google Scholar]
  19. Ørskov, J. ( 1923; ). Investigation into the Morphology of the Ray Fungi. Copenhagen: Levin & Munksgaard.
  20. Rhuland, L. E., Work, E., Denman, R. F. & Hoare, D. S. ( 1955; ). The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77, 4844–4846.[CrossRef]
    [Google Scholar]
  21. Rivas, R., Sánchez, M., Trujillo, M. E., Zurdo-Piñeiro, J. L., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. ( 2003; ). Xylanimonas cellulosilytica gen. nov., sp. nov., a xylanolytic bacterium isolated from a decayed tree (Ulmus nigra). Int J Syst Evol Microbiol 53, 99–103.[CrossRef]
    [Google Scholar]
  22. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  23. Schröder, K.-H., Naumann, L., Kroppenstedt, R. M. & Reischl, U. ( 1997; ). Mycobacterium hassiacum sp. nov., a new rapidly growing thermophilic mycobacterium. Int J Syst Bacteriol 47, 86–91.[CrossRef]
    [Google Scholar]
  24. Shirling, E. B. & Gottlieb, D. ( 1966; ). Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16, 313–340.[CrossRef]
    [Google Scholar]
  25. Stackebrandt, E., Rainey, F. A. & Ward-Rainey, N. L. ( 1997; ). Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47, 479–491.[CrossRef]
    [Google Scholar]
  26. Staneck, J. L. & Roberts, G. D. ( 1974; ). Simplified approach to the identification of aerobic actinomycetes by thin layer chromatography. Appl Microbiol 28, 226–231.
    [Google Scholar]
  27. Thawai, C., Tanasupawat, S., Itoh, T., Suwanborirux, K. & Kudo, T. ( 2005; ). Micromonospora siamensis sp. nov., isolated from Thai peat swamp forest. J Gen Appl Microbiol 51, 229–234.[CrossRef]
    [Google Scholar]
  28. Trujillo, M. E., Fernández-Molinero, C., Velázquez, E., Kroppenstedt, R. M., Schumann, P., Mateos, P. F. & Martínez-Molina, E. ( 2005; ). Micromonospora mirobrigensis sp. nov. Int J Syst Evol Microbiol 55, 877–880.[CrossRef]
    [Google Scholar]
  29. Trujillo, M. E., Kroppenstedt, R. M., Schumann, P. & Martínez-Molina, E. ( 2006a; ). Kribbella lupini sp. nov., isolated from the roots of Lupinus angustifolius. Int J Syst Evol Microbiol 56, 407–411.[CrossRef]
    [Google Scholar]
  30. Trujillo, M. E., Kroppenstedt, R. M., Schumann, P., Carro, L. & Martínez-Molina, E. ( 2006b; ). Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 56, 2381–2385.[CrossRef]
    [Google Scholar]
  31. Valdés, M., Pérez, N.-O., Estrada-de los Santos, P., Caballero-Mellado, J., Peña-Cabriales, J. J., Normand, P. & Hirsch, A. M. ( 2005; ). Non-Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl Environ Microbiol 71, 460–466.[CrossRef]
    [Google Scholar]
  32. Vincent, J. M. ( 1970; ). The cultivation, isolation and maintenance of rhizobia. In A Manual for the Practical Study of the Root-Nodule Bacteria, pp. 1–13. Edited by J. M. Vincent. Oxford: Blackwell Scientific.
  33. Williams, S. T., Goodfellow, M., Alderson, G., Wellington, E. M. H., Sneath, P. H. A. & Sackin, M. J. ( 1983; ). Numerical classification of Streptomyces and related genera. J Gen Microbiol 129, 1743–1813.
    [Google Scholar]
  34. Zhao, H., Kassama, Y., Young, M., Kell, D. B. & Goodacre, R. ( 2004; ). Differentiation of Micromonospora isolates from a coastal sediment in Wales on the basis of Fourier transform infrared spectroscopy 16S rRNA sequence analysis, and the amplified fragment length polymorphism technique. Appl Environ Microbiol 70, 6619–6627.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65192-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65192-0
Loading

Data & Media loading...

Supplements

Scanning electron micrographs of spores produced by sp. nov. Lupac 14N (A) and sp. nov. Lupac 09 (B). Strains were grown for 3 weeks on ISP 2 agar at 28 °C. Bars, 1 µm.

IMAGE

Scanning electron micrographs of spores produced by sp. nov. Lupac 14N (A) and sp. nov. Lupac 09 (B). Strains were grown for 3 weeks on ISP 2 agar at 28 °C. Bars, 1 µm.

IMAGE

Phylogenetic tree showing the relationships among all members of the genus and the new isolates based on 16S rRNA gene sequences. [PDF](19 KB)

PDF

[PDF file of Supplementary Tables S1 and S2](24 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error