1887

Abstract

Strain BCRC 14193, isolated from soil, shared more than 99 % 16S rRNA gene sequence similarity with BCRC 11601 and BCRC 17467. This strain was previously identified as , based on DNA–DNA hybridization, but its DNA relatedness value with BCRC 17467 was 89 %. To investigate the relatedness of strain BCRC 14193, and , the partial sequence of the gene encoding the subunit B protein of DNA gyrase () was determined. BCRC 17467 shared high gene sequence similarity with BCRC 14193 (98.4 %) and all of the strains available (95.5–95.6 %). DNA–DNA hybridization experiments revealed high relatedness values between BCRC 17467 and BCRC 11601 (74 %) and the reference strains (74–89 %). Based on these data and the lack of phenotypic distinctive characteristics, we propose as a later heterotypic synonym of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65191-0
2008-03-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/3/671.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65191-0&mimeType=html&fmt=ahah

References

  1. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  2. Felsenstein, J.(2002).phylip (Phylogeny Inference Package), version 3.6a. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  3. Fukumoto, J.(1943a). Studies on the production of bacterial amylase. I. Isolation of bacteria secreting potent amylase and their distribution. Nippon Nogei Kaggakai 19, 487–503 (in Japanese).[CrossRef] [Google Scholar]
  4. Fukumoto, J.(1943b). Studies on the production of bacterial amylase. II. Bacterial and physiological nature. Nippon Nogei Kaggakai 19, 643–650 (in Japanese). [Google Scholar]
  5. Goris, J., Suzuki, K., De Vos, P., Nakase, T. & Kersters, K.(1998). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44, 1148–1153.[CrossRef] [Google Scholar]
  6. Harwood, C. R.(1992).Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol 10, 247–256.[CrossRef] [Google Scholar]
  7. Kostinek, M., Pukall, R., Rooney, A. P., Schillinger, U., Hertel, C., Holzapfel, W. H. & Franz, C. M.(2005).Lactobacillus arizonensis is a later heterotypic synonym of Lactobacillus plantarum. Int J Syst Evol Microbiol 55, 2485–2489.[CrossRef] [Google Scholar]
  8. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  9. Logan, N. A. & Berkeley, R. C.(1984). Identification of Bacillus strains using the API system. J Gen Microbiol 130, 1871–1882. [Google Scholar]
  10. Nakamura, L. K.(1987). Deoxyribonucleic acid relatedness of lactose-positive Bacillus subtilis strains and Bacillus amyloliquefaciens. Int J Syst Bacteriol 37, 444–445.[CrossRef] [Google Scholar]
  11. Nakamura, L. K.(1989). Taxonomic relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. Int J Syst Bacteriol 39, 295–300.[CrossRef] [Google Scholar]
  12. Nakamura, L. K., Roberts, M. S. & Cohan, F. M.(1999). Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. Int J Syst Bacteriol 49, 1211–1215.[CrossRef] [Google Scholar]
  13. Naser, S. M., Hagen, K. E., Vancanneyt, M., Cleenwerck, I., Swings, J. & Tompkins, T. A.(2006a).Lactobacillus suntoryeus Cachat and Priest 2005 is a later synonym of Lactobacillus helveticus (Orla-Jensen 1919) Bergey et al. 1925 (Approved Lists 1980). Int J Syst Evol Microbiol 56, 355–360.[CrossRef] [Google Scholar]
  14. Naser, S. M., Vancanneyt, M., Hoste, B., Snauwaert, C., Vandemeulebroecke, K. & Swings, J.(2006b). Reclassification of Enterococcus flavescens Pompei et al. 1992 as a later synonym of Enterococcus casseliflavus (ex Vaughan et al. 1979) Collins et al. 1984 and Enterococcus saccharominimus Vancanneyt et al. 2004 as a later synonym of Enterococcus italicus Fortina et al. 2004. Int J Syst Evol Microbiol 56, 413–416.[CrossRef] [Google Scholar]
  15. O'Donnell, A. G., Norris, J. R., Berkeley, R. C. W., Kaneko, Logan, N. A. & Nozaki, R.(1980). Characterization of Bacillus subtilis, Bacillus pumilus, Bacillus licheniformis, and Bacillus amyloliquefaciens by pyrolysis gas-liquid chromatography, deoxyribonucleic acid-deoxyribonucleic acid hybridization, biochemical tests, and API systems. Int J Syst Bacteriol 30, 448–459.[CrossRef] [Google Scholar]
  16. Priest, F. G.(1977). Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev 41, 711–753. [Google Scholar]
  17. Priest, F. G., Goodfellow, M., Shute, L. A. & Berkeley, R. C. W.(1987).Bacillus amyloliquefaciens sp. nov., nom. rev. Int J Syst Bacteriol 37, 69–71.[CrossRef] [Google Scholar]
  18. Roberts, M. S., Nakamura, L. K. & Cohan, F. M.(1994).Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int J Syst Bacteriol 44, 256–264.[CrossRef] [Google Scholar]
  19. Roberts, M. S., Nakamura, L. K. & Cohan, F. M.(1996).Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis, isolated from soil in Death Valley, California. Int J Syst Bacteriol 46, 470–475.[CrossRef] [Google Scholar]
  20. Ruiz-García, C., Bejar, V., Martinez-Checa, F., Llamas, I. & Quesada, E.(2005).Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain. Int J Syst Evol Microbiol 55, 191–195.[CrossRef] [Google Scholar]
  21. Skerman, V. B. D., McGowan, V. & Sneath, P. H. A. (editors) 1980). Approved lists of bacterial names. Int J Syst Bacteriol 30, 225–420.[CrossRef] [Google Scholar]
  22. Tai, C. J., Kuo, H. P., Lee, F. L., Chen, H. K., Yokota, A. & Lo, C. C.(2006).Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 56, 1771–1776.[CrossRef] [Google Scholar]
  23. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  24. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  25. Wang, L. T., Lee, F. L., Tai, C. J., Yokota, A. & Kuo, H. P.(2007a). Reclassification of Bacillus axarquiensis Ruiz-García et al. 2005 and Bacillus malacitensis Ruiz-García et al. 2005 as later heterotypic synonyms of Bacillus mojavensis Roberts et al. 1994. Int J Syst Evol Microbiol 57, 1663–1667.[CrossRef] [Google Scholar]
  26. Wang, L. T., Lee, F. L., Tai, C. J. & Kasai, H.(2007b). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57, 1846–1850.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65191-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65191-0
Loading

Data & Media loading...

Supplements

Maximum-parsimony, maximum-likelihood and neighbour-joining trees obtained with 16S rRNA gene sequence, gene sequence and GyrB protein sequence of selected Bacillus strains. [PDF](414 KB)

PDF

Cellular fatty acid composition and differential phenotypic characteristics of and related species [PDF](68 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error