1887

Abstract

A Gram-negative, non-motile, rod-shaped, -like bacterial strain, ISL-39, was isolated from a marine solar saltern of the Yellow Sea in Korea and was subjected to a polyphasic taxonomic investigation. Strain ISL-39 grew optimally at pH 7.0–8.0 and 37 °C. It contained Q-8 as the predominant ubiquinone and iso-C, C and iso-C as the major fatty acids. The DNA G+C content was 57.7 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-39 belonged to the genus . Strain ISL-39 exhibited 16S rRNA gene sequence similarity values of 94.7–97.5 % with respect to the type strains of four recognized species. DNA–DNA relatedness data and the differential phenotypic properties and phylogenetic distinctiveness of ISL-39 make this strain distinguishable from the recognized species. On the basis of the phenotypic, phylogenetic and genetic data, strain ISL-39 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is ISL-39 (=KCTC 12973=CCUG 54356).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65184-0
2007-10-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/10/2365.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65184-0&mimeType=html&fmt=ahah

References

  1. Bruns, A., Rohde, M. & Berthe-Corti, L. ( 2001; ). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51, 1997–2006.[CrossRef]
    [Google Scholar]
  2. Cowan, S. T. & Steel, K. J. ( 1965; ). Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  3. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  4. González, J. M., Mayer, F., Moran, M. A., Hodson, R. E. & Whitman, W. B. ( 1997; ). Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47, 369–376.[CrossRef]
    [Google Scholar]
  5. Humm, H. J. ( 1946; ). Marine agar-digesting bacteria of the South Atlantic coast. Bull Duke Univ Mar Stn 3, 45–75.
    [Google Scholar]
  6. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  7. Lanyi, B. ( 1987; ). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67.
    [Google Scholar]
  8. Leifson, E. ( 1963; ). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184.
    [Google Scholar]
  9. Sasser, M. ( 1990; ). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  10. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  11. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  12. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  13. Yoon, J.-H., Kim, H., Kim, S.-B., Kim, H.-J., Kim, W. Y., Lee, S. T., Goodfellow, M. & Park, Y.-H. ( 1996; ). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46, 502–505.[CrossRef]
    [Google Scholar]
  14. Yoon, J.-H., Lee, S. T. & Park, Y.-H. ( 1998; ). Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48, 187–194.[CrossRef]
    [Google Scholar]
  15. Yoon, J.-H., Kim, I.-G., Shin, D.-Y., Kang, K. H. & Park, Y.-H. ( 2003a; ). Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 53, 53–57.[CrossRef]
    [Google Scholar]
  16. Yoon, J.-H., Kim, H., Kang, K. H., Oh, T.-K. & Park, Y.-H. ( 2003b; ). Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov. Int J Syst Evol Microbiol 53, 1357–1361.[CrossRef]
    [Google Scholar]
  17. Yoon, J.-H., Kim, I.-G., Oh, T.-K. & Park, Y.-H. ( 2004; ). Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. Int J Syst Evol Microbiol 54, 1111–1116.[CrossRef]
    [Google Scholar]
  18. Yurkov, V., Stackebrandt, E., Holmes, A., Fuerst, J. A., Hugenholtz, P., Golecki, J., Gad'on, N., Gorlenko, V. M., Kompantseva, E. I. & Drews, G. ( 1994; ). Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44, 427–434.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65184-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65184-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error