1887

Abstract

A Gram-negative, non-motile, rod-shaped, -like bacterial strain, ISL-39, was isolated from a marine solar saltern of the Yellow Sea in Korea and was subjected to a polyphasic taxonomic investigation. Strain ISL-39 grew optimally at pH 7.0–8.0 and 37 °C. It contained Q-8 as the predominant ubiquinone and iso-C, C and iso-C as the major fatty acids. The DNA G+C content was 57.7 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-39 belonged to the genus . Strain ISL-39 exhibited 16S rRNA gene sequence similarity values of 94.7–97.5 % with respect to the type strains of four recognized species. DNA–DNA relatedness data and the differential phenotypic properties and phylogenetic distinctiveness of ISL-39 make this strain distinguishable from the recognized species. On the basis of the phenotypic, phylogenetic and genetic data, strain ISL-39 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is ISL-39 (=KCTC 12973=CCUG 54356).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65184-0
2007-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/10/2365.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65184-0&mimeType=html&fmt=ahah

References

  1. Bruns A., Rohde M., Berthe-Corti L. 2001; Muricauda ruestringensis gen nov., sp. nov a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 511997–2006 [CrossRef]
    [Google Scholar]
  2. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. González J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B. 1997; Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47:369–376 [CrossRef]
    [Google Scholar]
  5. Humm H. J. 1946; Marine agar-digesting bacteria of the South Atlantic coast. Bull Duke Univ Mar Stn 3:45–75
    [Google Scholar]
  6. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  7. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  8. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  9. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  10. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  11. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  12. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  13. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H. 1996; Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46:502–505 [CrossRef]
    [Google Scholar]
  14. Yoon J.-H., Lee S. T., Park Y.-H. 1998; Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48:187–194 [CrossRef]
    [Google Scholar]
  15. Yoon J.-H., Kim I.-G., Shin D.-Y., Kang K. H., Park Y.-H. 2003a; Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 53:53–57 [CrossRef]
    [Google Scholar]
  16. Yoon J.-H., Kim H., Kang K. H., Oh T.-K., Park Y.-H. 2003b; Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov. Int J Syst Evol Microbiol 53:1357–1361 [CrossRef]
    [Google Scholar]
  17. Yoon J.-H., Kim I.-G., Oh T.-K., Park Y.-H. 2004; Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. Int J Syst Evol Microbiol 54:1111–1116 [CrossRef]
    [Google Scholar]
  18. Yurkov V., Stackebrandt E., Holmes A., Fuerst J. A., Hugenholtz P., Golecki J., Gad'on N., Gorlenko V. M., Kompantseva E. I., Drews G. 1994; Phylogenetic positions of novel aerobic, bacteriochlorophyll a -containing bacteria and description of Roseococcus thiosulfatophilus gen.nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44:427–434 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65184-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65184-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error