A moderately halophilic, strictly anaerobic bacterium, designated 37HS60, was isolated from an olive mill wastewater in southern Morocco (Marrakesh). The cells were straight, motile and stained Gram-positive, forming spherical and terminal spores and with an atypical thick and stratified multilayered cell wall. Major fatty acid components were iso-C17 : 110 or anteiso-C17 : 13 (19.3 %), C14 : 0 (14.3 %), C16 : 17 (9.9 %), C16 : 17 DMA (8.5 %) and C16 : 0 (7.6 %). Strain 37HS60 grew from 20 to 50 °C with an optimum at 40–45 °C, and growth was observed from pH 5.5 to 8.5 with an optimum of 6.8. The salinity range for growth was 10–100 g NaCl l with an optimum at 50 g NaCl l. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 37HS60 fell within the evolutionary radiation enclosed by cluster XII of the subphylum. Strain 37HS60 exhibited highest 16S rRNA gene sequence similarity of 92.0 % with and 90.6 % with . Moreover, 37HS60 did not grow on basal medium with hexose or pentose sugars as carbon and energy sources. Pyruvate, fumarate and succinate were the best substrates for 37HS60 growth with 1.0 g yeast extract l. The DNA G+C content was 33.0 mol%. Due to its phenotypic and genotypic characteristics, isolate 37HS60 is proposed as a novel species of a new genus, gen. nov., sp. nov. The type strain is 37HS60 (=JCM 14354=CCUG 53849).


Article metrics loading...

Loading full text...

Full text loading...



  1. Balch, W. E., Fox, G. E., Magrum, R. J. & Wolfe, R. S.(1979). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296. [Google Scholar]
  2. Balice, V. & Cera, O.(1984). Acidic phenolic fraction of the juice of olives determined by a gas chromatographic method. Grasas Aceites 25, 178–180. [Google Scholar]
  3. Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J., Ouellette, B. F. F., Rapp, B. A. & Wheeler, D. L.(1999). GenBank. Nucleic Acids Res 27, 12–17.[CrossRef] [Google Scholar]
  4. Breitenstein, A., Wiegel, J., Haertig, C., Weiss, N., Andreesen, J. R. & Lechner, U.(2002). Reclassification of Clostridium hydroxybenzoicum as Sedimentibacter hydroxybenzoicus gen. nov., comb. nov., and description of Sedimentibacter saalensis sp. nov. Int J Syst Evol Microbiol 52, 801–807.[CrossRef] [Google Scholar]
  5. Cato, E. P. & Stackebrandt, E.(1989). Taxonomy and phylogeny. In Clostridia, pp. 1–26. Edited by N. P. Minton & D. J. Clarke. New York: Plenum.
  6. Cato, E. P., George, W. L. & Finegold, S. M.(1986). Genus Clostridium. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1141–1200. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  7. Cayol, J.-L., Ducerf, S., Patel, B. K. C., Garcia, J.-L., Thomas, P. & Ollivier, B.(2000).Thermohalobacter berrensis gen. nov., sp. nov., a thermophilic, strictly halophilic bacterium from a solar saltern. Int J Syst Evol Microbiol 50, 559–564.[CrossRef] [Google Scholar]
  8. Chamkha, M., Labat, M., Patel, B. K. C. & Garcia, J.-L.(2001a). Isolation of a cinnamic acid-metabolizing Clostridium glycolicum strain from oil mill wastewaters and emendation of the species description. Int J Syst Evol Microbiol 51, 2049–2054.[CrossRef] [Google Scholar]
  9. Chamkha, M., Patel, B. K. C., Garcia, J.-L. & Labat, M.(2001b). Isolation of Clostridium bifermentans from oil mill wastewaters converting cinnamic acid to 3-phenylpropionic acid and emendation of the species. Anaerobe 7, 189–197.[CrossRef] [Google Scholar]
  10. Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H. & Farrow, J. A. E.(1994). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44, 812–826.[CrossRef] [Google Scholar]
  11. Dürre, P., Andersch, W. & Andreesen, J. R.(1981). Isolation and characterization of an adenine-utilizing, anaerobic sporeformer, Clostridium purinolyticum sp. nov. Int J Syst Bacteriol 31, 184–194.[CrossRef] [Google Scholar]
  12. Fardeau, M. L., Ollivier, B., Patel, B. K. C., Magot, M., Thomas, P., Rimbault, A., Rocchiccioli, F. & Garcia, J.-L.(1997).Thermotoga hypogea sp. nov., a xylanolytic thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47, 1013–1019.[CrossRef] [Google Scholar]
  13. Fardeau, M.-L., Magot, M., Patel, B. K. C., Thomas, P., Garcia, J.-L. & Ollivier, B.(2000).Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50, 2141–2149.[CrossRef] [Google Scholar]
  14. Farrow, J. A. E., Lawson, P. A., Hippe, H., Gauglitz, U. & Collins, M. D.(1995). Phylogenetic evidence that the Gram-negative nonsporulating bacterium Tissierella (Bacteroides) praeacuta is a member of the Clostridium subphylum of the Gram-positive bacteria and description of Tissierella creatini sp. nov. Int J Syst Bacteriol 45, 436–440.[CrossRef] [Google Scholar]
  15. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41, 95–98. [Google Scholar]
  16. Hamdi, H.(1993). Future prospects and constraints of olive mill wastewaters use and treatment: a review. Bioprocess Eng 8, 209–214.[CrossRef] [Google Scholar]
  17. Hernandez-Eugenio, G., Fardeau, M.-L., Cayol, J.-L., Patel, B. K. C., Thomas, P., Macarie, H., Garcia, J.-L. & Ollivier, B.(2002).Sporanaerobacter acetigenes gen. nov., sp. nov., a novel acetogenic, facultatively sulfur-reducing bacterium. Int J Syst Evol Microbiol 52, 1217–1223.[CrossRef] [Google Scholar]
  18. Hippe, H., Andreesen, J. R. & Gottschalk, G.(1992). The genus Clostridium – nonmedical. In The Prokaryotes, vol. II, pp. 1800–1866. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  19. Hungate, R. E.(1969). A roll tube method for the cultivation of strict anaerobes. Methods Microbiol 3B, 117–132. [Google Scholar]
  20. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  21. Labat, M., Augur, C., Perraud-Gaime, I., Roussos, S. & Sayadi, S.(2000). Biotechnological potentialities of polyphenolic compounds of coffee and comparison with olive. In Coffee Biotechnology and Quality, pp. 517–531. Edited by T. Sera, C. R. Soccol, A. Pandey & S. Roussos. Dordrecht: Kluwer.
  22. Lawson, P. A., Perez, P. L., Hutson, R. A., Hippe, H. & Collins, M. D.(1993). Towards a phylogeny of the clostridia based on 16S rRNA sequences. FEMS Microbiol Lett 113, 87–92.[CrossRef] [Google Scholar]
  23. Lesage-Meesen, L., Navarro, D., Maunier, S., Sigoillot, J.-C., Lorquin, J., Delattre, M., Simon, J.-L., Asther, M. & Labat, M.(2001). Simple phenolic content in olive residues as a function of extraction systems. Food Chem 75, 501–507.[CrossRef] [Google Scholar]
  24. Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker, C. T., Jr, Saxman, P. R., Farris, R. J., Garrity, G. M., Olsen, G. J., Shimdt, T. M. & Tiedje, J. M.(2001). The RDPII (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef] [Google Scholar]
  25. Mechichi, T., Labat, M., Woo, T. H. S., Thomas, P., Garcia, J.-L. & Patel, B. K. C.(1998).Eubacterium aggregans sp. nov., a new homoacetogenic bacterium from olive mill wastewater treatment digestor. Anaerobe 4, 283–291.[CrossRef] [Google Scholar]
  26. Mechichi, T., Labat, M., Garcia, J.-L., Thomas, P. & Patel, B. K. C.(1999a). Characterization of a new xylanolytic bacterium Clostridium xylanovorans sp. nov. Syst Appl Microbiol 22, 366–371.[CrossRef] [Google Scholar]
  27. Mechichi, T., Labat, M., Patel, B. K. C., Woo, T. H. S., Thomas, P. & Garcia, J.-L.(1999b).Clostridium methoxybenzovorans sp. nov., a new aromatic o-demethylating homoacetogen from an olive mill wastewater treatment digester. Int J Syst Evol Microbiol 49, 1201–1209. [Google Scholar]
  28. Mechichi, T., Fardeau, M. L., Labat, M., Garcia, J.-L., Verhe, F. & Patel, B. K. C.(2000).Clostridium peptidovorans sp. nov., a peptide-fermenting bacterium from an olive wastewater treatment digester. Int J Syst Evol Microbiol 50, 1259–1264.[CrossRef] [Google Scholar]
  29. Mesbah, M., Premachandran, U. & Whitman, W.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  30. Miranda-Tello, E., Fardeau, M.-L., Sepùlveda, J., Fernández, L., Cayol, J.-L., Thomas, P. & Ollivier, B.(2003).Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrate- and thiosulfate-reducing bacterium isolated from oilfield separator in the Gulf of Mexico. Int J Syst Evol Microbiol 53, 1509–1514.[CrossRef] [Google Scholar]
  31. Parshina, S. N., Kleerebezem, R., Sanz, J. L., Lettinga, G., Nozhevnikova, A. N., Kostrikina, N. A., Lysenko, A. M. & Stams, J. M.(2003).Soehngenia saccharolytica gen. nov., sp. nov., and Clostridium amygdalinum sp. nov., two novel anaerobic, benzaldehyde-converting bacteria. Int J Syst Evol Microbiol 53, 1791–1799.[CrossRef] [Google Scholar]
  32. Rainey, F. A. & Stackebrandt, E.(1993). 16S rRNA analysis reveals phylogenetic diversity among the polysaccharolytic Clostridia. FEMS Microbiol Lett 113, 125–128.[CrossRef] [Google Scholar]
  33. Rainey, F. A., Ward, N. L., Morgan, H. W., Toalster, R. & Stackebrandt, E.(1993). Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J Bacteriol 175, 4772–4779. [Google Scholar]
  34. Saitou, N. & Nei, M.(1987). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 405–425. [Google Scholar]
  35. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  36. Stackebrandt, E. & Hippe, H.(2001). Taxonomy and systematics. In Clostridia, Biotechnology and Medical Applications, pp. 19–48. Edited by H. Bahl & P. Dürre. Weinheim: Wiley-VHC.
  37. Stackebrandt, E. & Rainey, F. A.(1997). Phylogenetic relationships. In The Clostridia: Molecular Biology and Pathogenesis, pp. 3–19. Edited by J. I. Rood, B. A. McClane, J. G. Songer & R. W. Titball. New York: Academic Press.
  38. Stackebrandt, E., Kramer, I., Swiderski, J. & Hippe, H.(1999). Phylogenetic basis for a taxonomic dissection of the genus Clostridium. FEMS Immunol Med Microbiol 24, 253–258.[CrossRef] [Google Scholar]
  39. Thabet, O. B., Fardeau, M. L., Joulian, C., Thomas, P., Hamdi, M., Garcia, J.-L. & Ollivier, B.(2004).Clostridium tunisiense sp. nov., a new proteolytic, sulfur-reducing bacterium isolated from an olive mill wastewater contaminated by phosphogypse. Anaerobe 10, 185–190.[CrossRef] [Google Scholar]
  40. Wery, N., Moricet, J.-M., Cueff, V., Jean, J., Pignet, P., Lesongeur, F., Cambon-Bonavita, M.-A. & Barbier, G.(2001).Caloranaerobacter azorensis gen. nov., sp. nov., an anaerobic thermophilic bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51, 1789–1796.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error