1887

Abstract

Five isolates that were related phylogenetically to members of the genus were isolated from freshwater of the hard-water creek Westerhöfer Bach, North Germany. The five strains (WB 2.1-25, WB 2.3-71, WB 3.3-3, WB 3.3-22 and WB 2.3-45) were Gram-negative and chemoheterotrophic, with rod-shaped cells. Most of their metabolic properties matched those given in the description of the genus . Consistent with the genus description, their fatty acids included mainly iso-C and summed feature 3 (C 7, iso-C 2-OH or both); C 5, C, iso-C 3-OH, C 3-OH and iso-C 3-OH were present in smaller amounts. The major isoprenoid quinone was menaquinone 7. With one exception, binary similarity values of the almost complete 16S rRNA gene sequences determined among the isolates as well as between the isolates and type strains of species were lower than 98.5 %. The only exception was the close relationship between DSM 16990 and strain WB 2.3-45 (99.2 % similarity). DNA–DNA reassociation values determined for this pair of strains was 29.8 %, indicating that strain WB 2.3-45 represents a unique genospecies. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains WB 2.1-25 and WB 2.3-71 form a group that is moderately related to and strain WB 2.3-45 (98.5 % similarity). Strains WB 3.3-3 and WB 3.3-22 (98.5 % similarity) branched separately from these four organisms. The five phylogenetically isolated strains differed from each other as well as from the type strain of the type species ( DSM 2366) and some related representatives of the genus in several metabolic reactions and cultural parameters. On the basis of phenotypic and phylogenetic distinctiveness, five novel species are proposed: sp. nov., with WB 2.1-25 (=DSM 19034=CIP 109481) as the type strain; sp. nov., with WB 3.3-22 (=DSM 19036=CIP 109479) as the type strain; sp. nov., with WB 2.3-71 (=DSM 19035=CIP 109480) as the type strain; sp. nov., with WB 3.3-3 (=DSM 19033=CIP 109468) as the type strain; and sp. nov., with WB 2.3-45 (=DSM 19110=CIP 109507) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65166-0
2007-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/10/2221.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65166-0&mimeType=html&fmt=ahah

References

  1. Bernardet J. F., Nakagawa Y., Holmes B. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [CrossRef]
    [Google Scholar]
  2. Brambilla E., Päuker O., Cousin S., Steiner U., Reimer A., Stackebrandt E. 2007; High phylogenetic diversity of Flavobacterium spp. isolated from a hardwater creek, Harz Mountains, Germany. Org Divers Evol 7:145–154 [CrossRef]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  4. Cousin S., Päuker O., Stackebrandt E. 2007; Flavobacterium aquidurense sp. nov. and Flavobacterium hercynium sp. nov., from a hard-water creek. Int J Syst Evol Microbiol 57:243–249 [CrossRef]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  6. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  7. DSMZ 2001 DSMZ Catalogue of Strains , 7th edn. Braunschweig: Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH;
    [Google Scholar]
  8. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5.1. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  10. Gallego V., García M. T., Ventosa A. 2006; Pedobacter aquatilis sp. nov., isolated from drinking water, and emended description of the genus Pedobacter . Int J Syst Evol Microbiol 56:1853–1858 [CrossRef]
    [Google Scholar]
  11. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. R. (editors) 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  13. Hwang C. Y., Choi D. H., Cho B. C. 2006; Pedobacter roseus sp. nov., isolated from a hypertrophic pond, and emended description of the genus Pedobacter . Int J Syst Evol Microbiol 56:1831–1836 [CrossRef]
    [Google Scholar]
  14. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  15. Margesin R., Spröer C., Schumann P., Schinner F. 2003; Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 53:1291–1296 [CrossRef]
    [Google Scholar]
  16. Miller L. T. 1982; A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  17. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  18. NCCLS 2000 Performance Standards for Antimicrobial Disk Susceptibility Tests , 7th edn. Approved standard M2-A7 Wayne, PA: NCCLS;
    [Google Scholar]
  19. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  20. Shivaji S., Chaturvedi P., Reddy G. S. N., Suresh K. 2005; Pedobacter himalayensis sp. nov., from the Hamta glacier located in the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 55:1083–1088 [CrossRef]
    [Google Scholar]
  21. Somvanshi V. S., Lang E., Ganguly S., Swiderski J., Saxena A. K., Stackebrandt E. 2006; A novel species of Xenorhabdus , family Enterobacteriaceae : Xenorhabdus indica sp. nov., symbiotically associated with entomopathogenic nematode Steinernema thermophilum Ganguly and Singh, 2000. Syst Appl Microbiol 29:519–525 [CrossRef]
    [Google Scholar]
  22. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  23. Stackebrandt E., Lang E., Cousin S., Päuker O., Brambilla E., Kroppenstedt R. M., Lünsdorf H. 2007; Deefgea rivuli gen. nov., sp. nov., a member of the class Betaproteobacteria . Int J Syst Evol Microbiol 57:639–645 [CrossRef]
    [Google Scholar]
  24. Steyn P. L., Pot B., Segers P., Kersters K., Joubert J. J. 1992; Some novel aerobic heparin-degrading bacterial isolates. Syst Appl Microbiol 15:137–143
    [Google Scholar]
  25. Steyn P., Joubert J. J., Segers P., Pot B., Vancanneyt M., Willems A., Hoste B., Kersters K. 1993; The taxonomic position of some Gram-negative aerobic heparinase producing bacteria. In Advances in the Taxonomy and Significance of Flavobacterium, Cytophaga and Related Bacteria pp 137–151 Edited by Jooste P. J. Bloemfontein, South Africa: University of Orange Free State Press;
    [Google Scholar]
  26. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. 1998; Classification of heparinolytic bacteria into a new genus, Pedobacter , comprising four species: Pedobacter heparinus comb.nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov.Proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177 [CrossRef]
    [Google Scholar]
  27. Takeuchi M., Yokota A. 1992; Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov., and two genospecies of the genus Sphingobacterium and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum . J Gen Appl Microbiol 38:465–482 [CrossRef]
    [Google Scholar]
  28. Ten L. N., Liu Q.-M., Im W.-T., Lee M., Yang D.-C., Lee S.-T. 2006; Pedobacter ginsengisoli sp. nov., a DNase-producing bacterium isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 56:2565–2570 [CrossRef]
    [Google Scholar]
  29. Vanparys B., Heylen K., Lebbe L., De Vos P. 2005; Pedobacter caeni sp. nov., a novel species isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 55:1315–1318 [CrossRef]
    [Google Scholar]
  30. Yoon M.-H., Ten L. N., Im W.-T., Lee S. T. 2007; Pedobacter panaciterrae sp. nov., isolated from soil in South Korea. Int J Syst Evol Microbiol 57:381–386 [CrossRef]
    [Google Scholar]
  31. Zimmermann J. J., Langer R., Cooney C. L. 1990; Specific plate assay for bacterial heparinase. Appl Environ Microbiol 56:3593–3594
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65166-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65166-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error