An aerobic, rod-shaped, Gram-positive, oxidase-negative, catalase-positive bacterial isolate, strain FCC-01, originating as a contaminant of hairspray was characterized using phenotypic and molecular taxonomic methods. A 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus and represented an evolutionary lineage that was distinct from recognized species. Cell-wall hydrolysate from the isolate contained ornithine and the cell-wall sugars consisted of rhamnose and galactose. The main respiratory quinones were MK-12 (38 %) and MK-11 (35 %). The major cellular fatty acids were anteiso-C (48 %), anteiso-C (35 %) and iso-C (11 %). The DNA G+C content was 69 mol%. The isolate showed <98 % 16S rRNA gene sequence similarity with respect to all of the species with validly published names. On the basis of the morphological, physiological and chemotaxonomic data and the results of the comparative 16S rRNA gene sequence analysis, this isolate represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is FCC-01 (=JCM 14558 =DSM 19179).


Article metrics loading...

Loading full text...

Full text loading...



  1. Behrendt, U., Ulrich, A. & Schumann, P.(2001). Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward, and reclassification of Aureobacterium resistens (Funke et al. 1998) as Microbacterium resistens comb. nov. Int J Syst Evol Microbiol 51, 1267–1276. [Google Scholar]
  2. Brannan, D. K. & Dille, J. C.(1990). Type of closure prevents microbial contamination of cosmetics during consumer use. Appl Environ Microbiol 56, 1476–1479. [Google Scholar]
  3. Campana, R., Scesa, C., Patrone, V., Vittoria, E. & Baffone, W.(2006). Microbiological study of cosmetic products during their use by consumers: health risk and efficacy of preservative systems. Lett Appl Microbiol 43, 301–306.[CrossRef] [Google Scholar]
  4. Collins, M. D., Jones, D., Keddie, R. M., Kroppenstedt, R. M. & Schleifer, K. H.(1983). Classification of some coryneform bacteria in a new genus Aureobacterium. Syst Appl Microbiol 4, 236–252.[CrossRef] [Google Scholar]
  5. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  6. Funke, G., Falsen, E. & Barreau, C.(1995). Primary identification of Microbacterium spp. encountered in clinical specimens as CDC coryneform group A-4 and A-5 bacteria. J Clin Microbiol 33, 188–192. [Google Scholar]
  7. Funke, G., Lawson, A., Nolte, F. S., Weiss, N. & Collins, M. D.(1998).Aureobacterium resistens sp. nov. exhibiting vancomycin resistance and teicoplanin susceptibility. FEMS Microbiol Lett 158, 89–93.[CrossRef] [Google Scholar]
  8. Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R. & Phillips, G. R.(1981).Manual of Methods for General Bacteriology. Washington, DC: American Society for Microbiology.
  9. Hirji, Z., Saragosa, R., Dedier, H., Crump, M., Franke, N., Burrows, L., Jamieson, F., Brown, S. & Gardam, M. A.(2003). Contamination of bone marrow products with an actinomycete resembling Microbacterium species and reinfusion into autologous stem cell and bone marrow transplant recipients. Clin Infect Dis 36, e115–e121.[CrossRef] [Google Scholar]
  10. Kageyama, A., Takahashi, Y. & Ōmura, S.(2006).Microbacterium deminutum sp. nov., Microbacterium pumilum sp. nov. and Microbacterium aoyamense sp. nov. Int J Syst Evol Microbiol 56, 2113–2117.[CrossRef] [Google Scholar]
  11. Kageyama, A., Takahashi, Y. & Ōmura, S.(2007a).Microbacterium terricolae sp. nov., isolated from soil in Japan. J Gen Appl Microbiol 53, 1–5.[CrossRef] [Google Scholar]
  12. Kageyama, A., Takahashi, Y. & Ōmura, S.(2007b).Microbacterium terricola corrig., sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, List no. 116. Int J Syst Evol Microbiol 57, 1371–1373.[CrossRef] [Google Scholar]
  13. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  14. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  15. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  16. Laffineur, K., Avesani, V., Cornu, G., Charlier, J., Janssens, M., Wauters, G. & Delmée, M.(2003). Bacteremia due to a novel Microbacterium species in a patient with leukemia and description of Microbacterium paraoxydans sp. nov. J Clin Microbiol 41, 2242–2246.[CrossRef] [Google Scholar]
  17. Lau, S. K. P., Woo, P. C. Y., Woo, G. K. S. & Yuen, K.-Y.(2002). Catheter-related Microbacterium bacteremia identified by 16S rRNA gene sequencing. J Clin Microbiol 40, 2681–2685.[CrossRef] [Google Scholar]
  18. Lee, J. S., Lee, K. C. & Park, Y. H.(2006).Microbacterium koreense sp. nov., from sea water in the South Sea of Korea. Int J Syst Evol Microbiol 56, 423–427.[CrossRef] [Google Scholar]
  19. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  20. McClung, L. S. & Lindberg, R. B.(1957). The study of obligately anaerobic bacteria. In Manual of Microbiological Methods, pp. 120–139. Edited by H. J. Conn. New York: McGraw-Hill.
  21. Mikami, H. & Ishida, Y.(1983). Post-column fluorometric detection of reducing sugars in high-performance liquid chromatography using arginine. Bunseki Kagaku 32, E207–E210.[CrossRef] [Google Scholar]
  22. Orla-Jensen, S.(1919).The Lactic Acid Bacteria. Copenhagen: Høst and Son.
  23. Rzhetsky, A. & Nei, M.(1992). A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9, 945–967. [Google Scholar]
  24. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  25. Sakamoto, M., Suzuki, M., Umeda, M., Ishikawa, I. & Benno, Y.(2002). Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52, 841–849.[CrossRef] [Google Scholar]
  26. Schippers, A., Bosecker, K., Spröer, C. & Schumann, P.(2005).Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. Int J Syst Evol Microbiol 55, 655–660.[CrossRef] [Google Scholar]
  27. Schumann, P. & Evtushenko, L. I.(2006). International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of the suborder Micrococcineae. Minutes of the meeting, 24 July 2005, San Francisco, CA, USA. Int J Syst Evol Microbiol 56, 2721–2722.[CrossRef] [Google Scholar]
  28. Swofford, D. L.(2000).paup*: phylogenetic analysis using parsimony (and other methods), version 4. Sunderland, MA: Sinauer Associates.
  29. Takeuchi, M. & Hatano, K.(1998). Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Bacteriol 48, 739–747.[CrossRef] [Google Scholar]
  30. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  31. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  32. Yokota, A., Takeuchi, M., Sakane, T. & Weiss, N.(1993). Proposal of six new species in the genus Aureobacterium and transfer of Flavobacterium esteraromaticum Omelianski to the genus Aureobacterium as Aureobacterium esteraromaticum comb. nov. Int J Syst Bacteriol 43, 555–564.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 3, pp. 654 - 658

Neighbour-joining (Fig. S1) and minimum-evolution (Fig. S2) phylogenetic trees, based on 16S rRNA gene sequences, showing the position of isolate FCC-01 among recognized members of the genus .

Cellular fatty acid compositions (%) of isolate FCC-01 and type strains of related species.

[PDF file of Supplementary Figs and Table](110 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error