1887

Abstract

A collection of eight clinical strains from Belgian hospitals and three clinical strains of the CCUG collection were characterized biochemically as being similar to CDC groups II-h and II-c; the latter differs from group II-h only by positivity for sucrose acidification. These 11 strains were found to cluster according to 16S rRNA gene sequence similarity at a level of ≥99.5 %, and on the basis of their tDNA-PCR profile. Based on 16S rRNA gene sequence analysis, this collection of strains was related most closely to (97.2 %), but they differed from the type strain of this species by the following phenotypic characteristics: growth at 37 °C, negativity for xylose acidification, positivity for acetate assimilation–alkalinization on Simmons’ agar base and absence of flexirubin pigments, and by their tDNA-PCR profile. Strain NF802 showed only 57.8 % DNA–DNA relatedness to the type strain of . Fatty acid composition did not enable differentiation from . The DNA G+C content of strain NF802 is 36.5 mol%. The name sp. nov. is proposed for this taxon, with type strain NF802 (=CCUG 52711=CIP 109415).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65158-0
2007-11-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/11/2623.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65158-0&mimeType=html&fmt=ahah

References

  1. Baele, M., Baele, P., Vaneechoutte, M., Storms, V., Butaye, P., Devriese, L. A., Verschraegen, G., Gillis, M. & Haesebrouck, F. ( 2000; ). Application of tDNA-PCR for the identification of Enterococcus species. J Clin Microbiol 38, 4201–4207.
    [Google Scholar]
  2. Bernardet, J.-F., Nakagawa, Y. & Holmes, B. ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049–1070.[CrossRef]
    [Google Scholar]
  3. CLSI ( 2005; ). Performance Standards for Antimicrobial Susceptibility Testing (Approved Standard M100–S15). Wayne, PA: Clinical and Laboratory Standards Institute.
  4. de Beer, H., Hugo, C. J., Jooste, P. J., Willems, A., Vancanneyt, M., Coenye, T. & Vandamme, P. A. ( 2005; ). Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int J Syst Evol Microbiol 55, 2149–2153.[CrossRef]
    [Google Scholar]
  5. Gallego, V., Garcia, M. T. & Ventosa, A. ( 2006; ). Chryseobacterium hispanicum sp. nov., isolated from the drinking water distribution system of Sevilla, Spain. Int J Syst Evol Microbiol 56, 1589–1592.[CrossRef]
    [Google Scholar]
  6. Hugo, C. J., Segers, P., Hoste, B., Vancanneyt, M. & Kersters, K. ( 2003; ). C hryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53, 771–777.[CrossRef]
    [Google Scholar]
  7. Kämpfer, P. & Kroppenstedt, R. M. ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef]
    [Google Scholar]
  8. Kämpfer, P., Dreyer, U., Neef, A., Dott, W. & Busse, H.-J. ( 2003; ). Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53, 93–97.[CrossRef]
    [Google Scholar]
  9. Kämpfer, P., Avesani, V., Janssens, M., Charlier, J., De Baere, T. & Vaneechoutte, M. ( 2006; ). Description of Wautersiella falsenii gen. nov., sp. nov., to accommodate clinical isolates phenotypically resembling members of the genera Chryseobacterium and Empedobacter. Int J Syst Evol Microbiol 56, 2323–2329.[CrossRef]
    [Google Scholar]
  10. Kim, K. K., Bae, H. S., Schumann, P. & Lee, S. T. ( 2005a; ). Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55, 133–138.[CrossRef]
    [Google Scholar]
  11. Kim, K. K., Kim, M. K., Lim, J. H., Park, H. Y. & Lee, S. T. ( 2005b; ). Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 55, 1287–1293.[CrossRef]
    [Google Scholar]
  12. Laffineur, K., Janssens, M., Charlier, J., Avesani, V., Wauters, G. & Delmée, M. ( 2002; ). Biochemical and susceptibility tests useful for identification of nonfermenting Gram-negative rods. J Clin Microbiol 40, 1085–1087.[CrossRef]
    [Google Scholar]
  13. Li, Y., Kawamura, Y., Fujiwara, N., Naka, T., Liu, H., Huang, X., Kobayashi, K. & Ezaki, T. ( 2003; ). Chryseobacterium miricola sp. nov., a novel species isolated from condensation water of space station Mir. Syst Appl Microbiol 26, 523–528.[CrossRef]
    [Google Scholar]
  14. Lind, E. & Ursing, J. ( 1986; ). Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola, Erwinia milletiae) identified by DNA-DNA-hybridization. Acta Pathol Microbiol Immunol Scand [B] 94, 205–213.
    [Google Scholar]
  15. Martin, R., Riley, P. S., Hollis, D. G., Weaver, R. E. & Krichevsky, M. I. ( 1981; ). Characterization of some groups of Gram-negative non-fermentative bacteria by the carbon source alkalinization technique. J Clin Microbiol 14, 39–47.
    [Google Scholar]
  16. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  17. Nemec, A., De Baere, T., Tjernberg, I., Vaneechoutte, M., van der Reijden, T. J. K. & Dijkshoorn, L. ( 2001; ). Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 51, 1891–1899.[CrossRef]
    [Google Scholar]
  18. Park, M. S., Jung, S. R., Lee, K. H., Lee, M. S., Do, J. O., Kim, S. B. & Bae, K. S. ( 2006; ). Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56, 433–438.[CrossRef]
    [Google Scholar]
  19. Quan, Z.-X., Kim, K. K., Kim, M.-K., Jin, L. & Lee, S. T. ( 2007; ). Chryseobacterium caeni sp. nov., isolated form bioreactor sludge. Int J Syst Evol Microbiol 57, 141–145.[CrossRef]
    [Google Scholar]
  20. Schreckenberger, P. C., Daneshvar, M. I., Weyant, S. R. & Hollis, D. G. ( 2003; ). Acinetobacter, Achromobacter, Chryseobacterium, Moraxella, and other nonfermentative Gram-negative rods. In Manual of Clinical Microbiology, 8th edn, pp. 749–779. Edited by P. R. Murray, E. J. Baron, J. H. Jorgensen, M. A. Pfaller & R. H. Yolken. Washington, DC: American Society for Microbiology.
  21. Shen, F. T., Kämpfer, P., Young, C. C., Lai, W. A. & Arun, A. B. ( 2005; ). Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 55, 1301–1304.[CrossRef]
    [Google Scholar]
  22. Shimomura, K., Kaji, S. & Hiraishi, A. ( 2005; ). Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 55, 1903–1906.[CrossRef]
    [Google Scholar]
  23. Tai, C. J., Kuo, H. P., Lee, F. L., Chen, H. K., Yokota, A. & Lo, C. C. ( 2006; ). Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 56, 1771–1776.[CrossRef]
    [Google Scholar]
  24. Wauters, G., Van Bosterhaut, B., Janssens, M. & Verhaegen, J. ( 1998; ). Identification of Corynebacterium amycolatum and other nonlipophilic fermentative corynebacteria of human origin. J Clin Microbiol 36, 1430–1432.
    [Google Scholar]
  25. Wauters, G., Avesani, V., Laffineur, K., Charlier, J., Janssens, M., Van Bosterhaut, B. & Delmée, M. ( 2003; ). Brevibacterium lutescens sp. nov., from human and environmental samples. Int J Syst Evol Microbiol 53, 1321–1325.[CrossRef]
    [Google Scholar]
  26. Weon, H. Y., Kim, B. Y., Yoo, S. H., Kwon, S. W., Cho, Y. H., Go, S. J. & Stackebrandt, E. ( 2006; ). Chryseobacterium wanjuense sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 56, 1501–1504.[CrossRef]
    [Google Scholar]
  27. Yamaguchi, S. & Yokoe, M. ( 2000; ). A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 66, 3337–3343.[CrossRef]
    [Google Scholar]
  28. Young, C. C., Kämpfer, P., Shen, F. T., Lai, W. A. & Arun, A. B. ( 2005; ). Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55, 423–426.[CrossRef]
    [Google Scholar]
  29. Ziemke, F., Höfle, M. G., Lalucat, J. & Rosselló-Mora, R. ( 1998; ). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65158-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65158-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error