1887

Abstract

Six representatives of a luminous bacterium commonly found in association with deep, cold-dwelling marine fishes were isolated from the light organs and skin of different fish species. These bacteria were Gram-negative, catalase-positive, and weakly oxidase-positive or oxidase-negative. Morphologically, cells of these strains were coccoid or coccoid-rods, occurring singly or in pairs, and motile by means of polar flagellation. After growth on seawater-based agar medium at 22 °C for 18 h, colonies were small, round and white, with an intense cerulean blue luminescence. Analysis of 16S rRNA gene sequence similarity placed these bacteria in the genus . Phylogenetic analysis based on seven housekeeping gene sequences (16S rRNA gene, , , , , and ), seven gene sequences of the operon (, , , , , and ) and four gene sequences of the operon (, , and ), resolved the six strains as members of the genus and as a clade distinct from other species of . These strains were most closely related to and . DNA–DNA hybridization values between the designated type strain, .1.1, and . LMG 4233, . LMG 19543 and LMG 22857 were 51, 43 and 19 %, respectively. In AFLP analysis, the six strains clustered together, forming a group distinct from other analysed species. The fatty acid C cyclo was present in these bacteria, but not in . , . or . A combination of biochemical tests (arginine dihydrolase and lysine decarboxylase) differentiates these strains from . and . . The DNA G+C content of .1.1 is 40.2 %, and the genome size is approximately 4.2 Mbp, in the form of two circular chromosomes. These strains represent a novel species, for which the name sp. nov. is proposed. The type strain, .1.1 (=ATCC BAA-1194=LMG 23890), is a luminous symbiont isolated from the light organ of the deep-water fish .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65153-0
2007-09-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/9/2073.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65153-0&mimeType=html&fmt=ahah

References

  1. Ast, J. C. & Dunlap, P. V. ( 2005; ). Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group. Environ Microbiol 7, 1641–1654.[CrossRef]
    [Google Scholar]
  2. Baumann, P. & Baumann, L. ( 1984; ). Section 5, Family II, Genus II. Photobacterium Beijerinck 1889. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 539–545. Edited by N. R. Krieg. Baltimore, MD: Williams & Wilkins.
  3. Beijerinck, M. W. ( 1889; ). Photobacterium luminosum, a luminous bacterium from the North Sea (Le Photobacterium luminosum, Bactérie lumineuse de la Mer du Nord). Translated from Archives Néederlandaises des Sciences Exactes et Naturelles, 23, 401–427 (M. A. Gradstein & C. D. Lichtfield, transl.) In Marine Microbiology, pp. 16–25. Edited by C. D. Lichtfield. Stroudsberg, PA: Dowden, Hutchinson & Ross.
  4. Cleenwerck, I., Vandemeulebroecke, K., Janssens, D. & Swings, J. ( 2002; ). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52, 1551–1588.[CrossRef]
    [Google Scholar]
  5. Dunlap, P. V. & Ast, J. C. ( 2005; ). Genomic and phylogenetic characterization of luminous bacteria symbiotic with the deep-sea fish Chlorophthalmus albatrossis (Aulopiformes: Chlorophthalmidae). Appl Environ Microbiol 71, 930–939.[CrossRef]
    [Google Scholar]
  6. Dunlap, P. V. & Kita-Tsukamoto, K. ( 2006; ). Luminous bacteria. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 3, pp. 863–892. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.
  7. Dunlap, P. V., Ast, J. C., Kimura, S., Fukui, A., Yoshino, T. & Endo, H. ( 2007; ). Phylogenetic analysis of host–symbiont specificity and codivergence in bioluminescent symbiosis. Cladistics in press
    [Google Scholar]
  8. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  9. Georgala, D. L. ( 1958; ). The bacterial flora of the skin of North Sea cod. J Gen Microbiol 18, 84–91.[CrossRef]
    [Google Scholar]
  10. Goloboff, P. A., Farris, J. S. & Nixon, K. C. ( 2005; ). tnt - Tree Analysis Using New Technology, version 1.0 (http://www.zmuc.dk/public/phylogeny/TNT/). Instituto Superior de Entomología, Consejo Nacional de Investigaciones Científicas y Técnicas, Tucamán, Argentina.
  11. Goris, J., Suzuki, K., De Vos, P., Nakase, T. & Kersters, K. ( 1998; ). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44, 1148–1153.[CrossRef]
    [Google Scholar]
  12. Hastings, J. W. & Nealson, K. H. ( 1981; ). The symbiotic luminous bacteria. In The Prokaryotes: a Handbook on Habitats, Isolation, and Identification of Bacteria, pp. 1332–1345. Edited by M. P. Starr, H. Stolp, H. G. Trüper, A. Balows & H. G. Schlegel. New York: Springer-Verlag.
  13. Haygood, M. G., Distel, D. L. & Herring, P. J. ( 1992; ). Polymerase chain reaction and 16S rRNA gene sequences from the luminous bacterial symbionts of two deep-sea anglerfishes. J Mar Biol Assoc UK 72, 149–159.[CrossRef]
    [Google Scholar]
  14. Hendrie, M. S., Hodgkiss, W. & Shewan, J. M. ( 1970; ). The identification, taxonomy and classification of luminous bacteria. J Gen Microbiol 64, 151–169.[CrossRef]
    [Google Scholar]
  15. Klappenbach, J. A., Saxman, P. R., Cole, J. R. & Schmidt, T. M. ( 2001; ). rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res 29, 181–184.[CrossRef]
    [Google Scholar]
  16. Lucangeli, C., Morabito, S., Caprioli, A., Achene, L., Busani, L., Mazzolioni, E., Fabris, A. & Macri, A. ( 2000; ). Molecular fingerprinting of strains of Yersinia ruckeri serovar O1 and Photobacterium damsela subsp. piscicida isolated in Italy. Vet Microbiol 76, 273–281.[CrossRef]
    [Google Scholar]
  17. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurements of G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  18. Okada, K., Iida, T., Kita-Tsukamoto, K. & Honda, T. ( 2005; ). Vibrios commonly possess two chromosomes. J Bacteriol 187, 752–757.[CrossRef]
    [Google Scholar]
  19. Reichelt, J. L. & Baumann, P. ( 1973; ). Taxonomy of the marine, luminous bacteria. Arch Mikrobiol 94, 283–330.[CrossRef]
    [Google Scholar]
  20. Swofford, D. L. ( 2002; ). paup*: Phylogenetic Analysis Using Parsimony (*and other methods), version 4.0B10. Sunderland, MA: Sinauer Associates.
  21. Thompson, F. L., Hoste, B., Vandemeulebroecke, K. & Swings, J. ( 2001; ). Genomic diversity amongst Vibrio isolates from different sources determined by fluorescent amplified length polymorphism. Syst Appl Microbiol 24, 520–538.[CrossRef]
    [Google Scholar]
  22. Wheeler, W. C. ( 1996; ). Optimization alignment: the end of multiple sequence alignment in phylogenetics?. Cladistics 12, 1–9.[CrossRef]
    [Google Scholar]
  23. Wheeler, W. C., Gladstein, D. & De Laet, J. ( 2003; ). poy: phylogeny reconstruction via optimization of DNA and other data, version 3.0.11 (http://research.amnh.org/scicomp/projects/poy.php). New York: American Museum of Natural History.
  24. Wheeler, W. C., Aagesen, L., Arango, C. P., Faivovich, J., Grant, T., D'Haese, C., Janies, D., Smith, W. L., Varón, A. & Giribet, G. ( 2006; ). Dynamic Homology and Phylogenetic Systematics: a Unified Approach Using POY. New York: American Museum of Natural History.
  25. Wilson, K. ( 1987; ). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Greene Publishing & Wiley-Interscience.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65153-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65153-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2073 - 2078

– Methods

Phylogenetic tree based on analysis of three genes ( , and )

. Primer sequences, PCR conditions and references for amplification of genetic sequences used in this study

[Single PDF file](391 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error