1887

Abstract

Using tDNA-PCR, the type strain CCM 7198 (←CIP 107470 ←17A04) of was found to be indistinguishable from strains. Therefore, the phenotypic properties, amplified fragment length polymorphism (AFLP) patterns and 16S rRNA and gene sequences of the type strain of (CCM 7198) were determined. We found that the strain used -arginine and -glutamate, in contrast to the original description and in accordance with the phenotypic properties of . By AFLP analysis, CCM 7198 clustered at 50.2 % with a set of strains previously identified by DNA–DNA hybridization, which is in accordance with the previously established intraspecies values of this technique. Sequence similarity of the 16S rRNA gene between the type strains of the two species was found to be 99.9 %. Finally, DNA–DNA relatedness between the type strains of and was redetermined and was found to be 85 %. These findings were corroborated for a second representative of the type strain, DSM 14968. These data confirm that is a later heterotypic synonym of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65129-0
2008-04-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/4/937.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65129-0&mimeType=html&fmt=ahah

References

  1. Baele, M., Baele, P., Vaneechoutte, M., Storms, V., Butaye, P., Devriese, L. A., Verschraegen, G., Gillis, M. & Haesebrouck, F. ( 2000; ). Application of tDNA-PCR for the identification of Enterococcus species. J Clin Microbiol 38, 4201–4207.
    [Google Scholar]
  2. Baele, M., Storms, V., Haesebrouck, F., Devriese, L. A., Gillis, M., Verschraegen, G., De Baere, T. & Vaneechoutte, M. ( 2001; ). Application and evaluation of the interlaboratory reproducibility of tRNA intergenic length polymorphism analysis (tDNA-PCR) for identification of species of the genus Streptococcus. J Clin Microbiol 39, 1436–1442.[CrossRef]
    [Google Scholar]
  3. Bouvet, P. J. M. & Grimont, P. A. D. ( 1986; ). Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Bacteriol 36, 228–240.[CrossRef]
    [Google Scholar]
  4. Carr, E. L., Kämpfer, P., Patel, B. K. C., Gürtler, V. & Seviour, R. J. ( 2003; ). Seven novel species of Acinetobacter isolated from activated sludge. Int J Syst Evol Microbiol 53, 953–963.[CrossRef]
    [Google Scholar]
  5. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  6. Goris, J., Suzuki, K., De Vos, P., Nakase, T. & Kersters, K. ( 1998; ). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44, 1148–1153.[CrossRef]
    [Google Scholar]
  7. Ibrahim, A., Gerner-Smidt, P. & Liesack, W. ( 1997; ). Phylogenetic relationship of the twenty-one DNA groups of the genus Acinetobacter as revealed by 16S ribosomal DNA sequence analysis. Int J Syst Bacteriol 47, 837–841.[CrossRef]
    [Google Scholar]
  8. La Scola, B., Gundi, V. A. K. B., Khamis, A. & Raoult, D. ( 2006; ). Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J Clin Microbiol 44, 827–832.[CrossRef]
    [Google Scholar]
  9. Lapage, S. P., Sneath, P. H. A., Lessel, E. F., Skerman, V. B. D., Seeliger, H. P. R. & Clark, W. A. (editors) ( 1992; ). International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code. Washington, DC: American Society for Microbiology.
  10. Nemec, A., De Baere, T., Tjernberg, I., Vaneechoutte, M., van der Reijden, T. J. K. & Dijkshoorn, L. ( 2001; ). Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 51, 1891–1899.[CrossRef]
    [Google Scholar]
  11. Nemec, A., Dijkshoorn, L., Cleenwerck, I., De Baere, T., Janssens, D., van der Reijden, T. J. K., Jezek, P. & Vaneechoutte, M. ( 2003; ). Acinetobacter parvus sp. nov., a small-colony-forming species isolated from human specimens. Int J Syst Evol Microbiol 53, 1563–1567.[CrossRef]
    [Google Scholar]
  12. Rainey, F. A., Lang, E. & Stackebrandt, E. ( 1994; ). The phylogenetic structure of the genus Acinetobacter. FEMS Microbiol Lett 124, 349–354.[CrossRef]
    [Google Scholar]
  13. van den Broek, P. J., Arends, J., Bernards, A. T., De Brauwer, E., Mascini, E. M., van der Reijden, T. J., Spanjaard, L., Thewessen, E. A., van der Zee, A. & other authors ( 2006; ). Epidemiology of multiple Acinetobacter outbreaks in The Netherlands during the period 1999–2001. Clin Microbiol Infect 12, 837–843.[CrossRef]
    [Google Scholar]
  14. Vaneechoutte, M., Boerlin, P., Tichy, H.-V., Bannerman, E., Jäger, B. & Bille, J. ( 1998; ). Comparison of PCR-based DNA fingerprinting techniques for the identification of Listeria species and their use for atypical Listeria isolates. Int J Syst Bacteriol 48, 127–139.[CrossRef]
    [Google Scholar]
  15. Vaneechoutte, M., Tjernberg, I., Baldi, F., Pepi, M., Fani, R., Sullivan, E. R., van der Toorn, J. & Dijkshoorn, L. ( 1999; ). Oil-degrading Acinetobacter strain RAG-1 and strains described as ‘Acinetobacter venetianus sp. nov.’ belong to the same genomic species. Res Microbiol 150, 69–73.[CrossRef]
    [Google Scholar]
  16. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  17. Wilson, K. ( 1987; ). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Greene Publishing and Wiley-Interscience.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65129-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65129-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error