1887

Abstract

Two free-living nitrogen-fixing bacterial strains, N6 and N7, were isolated from corn rhizosphere. A polyphasic taxonomic approach, including morphological characterization, Biolog analysis, DNA–DNA hybridization, and 16S rRNA, and gene sequence analysis, was taken to analyse the two strains. 16S rRNA gene sequence analysis indicated that strains N6 and N7 both belonged to the genus and were closely related to (98.7 and 98.8 % similarity, respectively) and (97.5 and 97.6 % similarity, respectively). DNA–DNA hybridization of strains N6 and N7 showed reassociation values of 48 and 37 %, respectively, with and 43 % with . Sequences of the and genes of both strains showed 99 and ~95 % similarity, respectively, with those of . Chemotaxonomic characteristics (Q-10 as quinone system, 18 : 17 as major fatty acid) and G+C content of the DNA (67.6 mol%) were also similar to those of members of the genus . Gene sequences and Biolog and fatty acid analysis showed that strains N6 and N7 differed from the closely related species and . On the basis of these results, it is proposed that these nitrogen-fixing strains represent a novel species. The name sp. nov. is suggested, with N7 (=NCCB 100147=LMG 23989) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65128-0
2007-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/12/2805.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65128-0&mimeType=html&fmt=ahah

References

  1. Ben Dekhil S., Cahill M., Stackebrandt E., Sly L. I. 1997; Transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov., and elevation of Conglomeromonas largomobilis subsp. parooensis to the new type species of Conglomeromonas, Conglomeromonas parooensis sp. nov. Syst Appl Microbiol 20:72–77 [CrossRef]
    [Google Scholar]
  2. Eckert B., Weber O. B., Kirchhof G., Halbritter A., Stoffels M., Hartmann A. 2001; Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus . Int J Syst Evol Microbiol 51:17–26
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Khammas K. M., Ageron E., Grimont P. A. D., Kaiser P. 1989; Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res Microbiol 140:679–693
    [Google Scholar]
  5. Magalhães F. M., Baldani J. I., Souto S. M., Kuykendall J. R., Döbereiner J. 1983; A new acid-tolerant Azospirillum species. An Acad Bras Cienc 55:417–430
    [Google Scholar]
  6. Mehnaz S., Lazarovits G. 2006; Inoculation effects of Pseudomonas putida , Gluconacetobacter azotocaptans and Azospirillum lipoferum on corn plant growth under green house conditions. Microb Ecol 51:326–335 [CrossRef]
    [Google Scholar]
  7. Mehnaz S., Mirza M. S., Huarat J., Bally R., Normand P., Malik K. A. 2001; Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 47:110–117 [CrossRef]
    [Google Scholar]
  8. Mehnaz S., Weselowski B., Lazarovits G. 2007; Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 57:620–624 [CrossRef]
    [Google Scholar]
  9. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  10. Nautiyal C. S. 1999; An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270 [CrossRef]
    [Google Scholar]
  11. Normand P. 1995; Utilisation des séquences 16S pour le positionnement phylétique d'un organisme inconnu. Oceanis 21:31–56
    [Google Scholar]
  12. Paisley R. 1996 MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual Newark, DE: MIDI;
    [Google Scholar]
  13. Peng G., Wang H., Zhang G., Hou W., Liu Y., Wang E. T., Tan Z. 2006; Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 56:1263–1271 [CrossRef]
    [Google Scholar]
  14. Poly F., Monrozier L. J., Bally R. 2001; Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103 [CrossRef]
    [Google Scholar]
  15. Reinhold B., Hurek T., Fendrik I., Pot B., Gillis M., Kersters K., Thielemans S., De Ley J. 1987; Azospirillum halopraeferens sp. nov., a nitrogen fixing organism associated with roots of kallar grass ( Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 37:43–51 [CrossRef]
    [Google Scholar]
  16. Rennie R. J. 1981; A single medium for the isolation of nitrogen fixing bacteria. Can J Microbiol 27:8–14 [CrossRef]
    [Google Scholar]
  17. Tarrand J. J., Kreig N. R., Döbereiner J. 1978; A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen.nov., and two species, Azospirillum lipoferum (Beijerinck) comb.nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980 [CrossRef]
    [Google Scholar]
  18. Xie C.-H., Yokota A. 2005; Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa . Int J Syst Evol Microbiol 55:1435–1438 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65128-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65128-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error