gen. nov., sp. nov. and sp. nov., novel obligately chemolithoautotrophic, moderately halophilic, thiodenitrifying from hypersaline habitats Free

Abstract

A novel group of moderately halophilic, obligately chemolithoautotrophic, sulfur-oxidizing was found in sediments of various inland hypersaline lakes and a solar saltern. These bacteria were enriched and isolated with thiosulfate as electron donor and nitrate as electron acceptor at 2 M NaCl. Ten isolates (HLD strains) were long non-motile rods. They grew anaerobically as complete denitrifiers, and aerobically under micro-oxic conditions. Sulfate was the final product of thiosulfate and sulfide oxidation, and nitrite and NO were intermediates of nitrate reduction to N. The HLD strains grew optimally at pH 7.3–7.8, and at NaCl concentrations of 1.5–2.0 M. On the basis of phenotypic and genetic analysis, the moderately halophilic, thiodenitrifying isolates are proposed to be assigned to a new genus and species, gen. nov., sp. nov. The type strain is HLD 2 (=DSM 15841=UNIQEM U222 ). A single strain, HRhD 3sp, with vibrio-shaped cells, was obtained from a co-culture capable of complete denitrification of nitrate in the presence of either thiocyanate or thiosulfate as electron donor. It grew anaerobically with thiosulfate, reducing nitrate to nitrite, or under micro-oxic conditions at 1.0–2.5 M NaCl with an optimum at 1.0 M. Strain HRhD 3sp was genetically related to the HLD strains at the level of a separate species and is described as sp. nov. The type strain is HRhD 3sp (=DSM 16925=UNIQEM U248).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65112-0
2007-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/7/1582.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65112-0&mimeType=html&fmt=ahah

References

  1. Antón J., Oren A., Benlloch S., Rodríguez-Valera F., Amann R., Rosselló-Mora R. 2002; Salinibacter ruber gen. nov., sp. nov. a new species of extremely halophilic bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491
    [Google Scholar]
  2. Braker G., Fesefeldt A., Witzel K.-P. 1998; Development of PCR primer systems for amplification of nitrite reductase genes ( nirK and nirS ) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64:3769–3775
    [Google Scholar]
  3. De Ley J., Caffon H., Reinaerts A. 1970; The quantitative measurements of hybridisation DNA from renaturation rates. Eur J Biochem 12:133–140 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1989; phylip – Phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  5. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. H. New York: Academic Press;
    [Google Scholar]
  6. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  7. Oren A. 1999; Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348
    [Google Scholar]
  8. Oren A. 2002 Halophilic Microorganisms and Their Environments Dordrecht, The Netherlands: Kluwer;
    [Google Scholar]
  9. Pfennig N., Lippert K. D. 1966; über das Vitamin B12-Bedürfnis phototropher Schwefelbacterien. Arch Microbiol 55:245–256
    [Google Scholar]
  10. Schäfer H., Muyzer G. 2001; Denaturing gradient gel electrophoresis in marine microbial ecology. Methods Microbiol 30:425–468
    [Google Scholar]
  11. Silva M. T., Sousa J. C. F., Polonia J. J., Macedo M. A. E., Parente A. M. 1976; Bacterial mesosomes. Real structures or artifacts? Biochim Biophys Acta 443:92–105 [CrossRef]
    [Google Scholar]
  12. Sorokin D. Yu., Kuenen J. G. 2005; Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29:685–702 [CrossRef]
    [Google Scholar]
  13. Sorokin D. Yu., Kuenen J. G., Jetten M. 2001a; Denitrification at extremely alkaline conditions in obligately autotrophic alkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio denitrificans . Arch Microbiol 175:94–101 [CrossRef]
    [Google Scholar]
  14. Sorokin D. Yu., Tourova T. P., Lysenko A. M., Kuenen J. G. 2001b; Microbial thiocyanate utilization under highly alkaline conditions. Appl Environ Microbiol 67:528–538 [CrossRef]
    [Google Scholar]
  15. Sorokin D. Yu., Tourova T. P., Antipov A. N., Muyzer G., Kuenen J. G. 2004; Anaerobic growth of the haloalkaliphilic denitrifying sulphur-oxidising bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate. Microbiology 150:2435–2442 [CrossRef]
    [Google Scholar]
  16. Sorokin D. Yu., Tourova T. P., Galinski E. A., Belloch C., Tindall B. J. 2006a; Extremely halophilic denitrifying bacteria from hypersaline inland lakes Halovibrio denitrificans sp.nov. and Halospina denitrificans gen. nov., sp. nov.,and evidence that the genus name Halovibrio (Fendrich 1989) with the type species H. variabilis should be associated with DSM 3050. Int J Syst Evol Microbiol 56:379–388 [CrossRef]
    [Google Scholar]
  17. Sorokin D. Yu., Tourova T. P., Lysenko A. M., Muyzer G. 2006b; Culturable diversity of halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 152:3013–3023 [CrossRef]
    [Google Scholar]
  18. Sorokin D. Yu., Tourova T. P., Kolganova T. V., Spiridonova E. M., Berg I. A., Muyzer G. 2006c; Thiomicrospira halophila sp. nov., a novel, moderately halophilic, obligately chemolithoautotrophic sulfur-oxidizing bacterium from hypersaline lakes. Int J Syst Evol Microbiol 56:2375–2380 [CrossRef]
    [Google Scholar]
  19. Sorokin D. Yu., Tourova T. P., Bezsoudnova E. Yu., Pol A., Muyzer G. 2007; Denitrification in a binary culture and thiocyanate metabolism in Thiohalophilus thiocyanoxidans gen. nov. sp. nov. – a moderately halophilic chemolithoautotrophic sulfur-oxidizing Gammaproteobacterium from hypersaline lakes. Arch Microbiol 187:441–450 [CrossRef]
    [Google Scholar]
  20. Valderrama M. J., Monteoliva-Sanchez M., Quesada E., Ramos-Cormenzana A. 1998; Influence of salt concentration on the cellular fatty acid composition of the moderately halophilic bacterium Halomonas salina . Res Microbiol 149:675–679 [CrossRef]
    [Google Scholar]
  21. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  22. Ventosa A., Nieto J. J., Oren A. 1998; Biology of aerobic moderately halophilic bacteria. Microbiol Mol Biol Rev 62:504–544
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  24. Wood A. P., Kelly D. P. 1991; Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulphur-oxidizing autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156:277–280 [CrossRef]
    [Google Scholar]
  25. Zhilina T. N., Zavarzin G. A., Rainey F. A., Pikuta E. N., Osipov G. A., Kostrikina N. A. 1997; Desulfonatronovibrio hydrogenovorans gen nov., sp. nov., an alkaliphilic sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65112-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65112-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited Most Cited RSS feed