1887

Abstract

A Gram-positive and catalase-negative coccus that formed chains, strain FP15-1, isolated from fermented tea leaves (‘miang’), was studied systematically. The strain was facultatively anaerobic and produced -lactic acid from glucose. Demethylmenaquinone (DMK-7) was the major menaquinone. Straight-chain unsaturated fatty acids C and C were the dominant components. The DNA G+C content was 37.8 mol%. On the basis of 16S rRNA and RNA polymerase subunit () gene sequence analysis, strain FP15-1 was closely related to KCTC 5373, with 99.2 and 93.8 % similarity, respectively. The strain could be clearly distinguished from ATCC 5373 by low DNA–DNA relatedness (≤33.8 %) and phenotypic characteristics. Therefore, this strain represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is FP15-1 (=KCTC 13133 =NBRC 101868 =NRIC 0105 =TISTR 932 =PCU 277).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65109-0
2007-09-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/9/2151.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65109-0&mimeType=html&fmt=ahah

References

  1. Baele M., Baele P., Vaneechoutte M., Storms V., Butaye P., Devriese L. A., Verschraegen G., Gillis M., Haesebrouck F. 2000; Application of tRNA intergenic spacer PCR for identification of Enterococcus species. J Clin Microbiol 38:4201–4207
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A. 1993 Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  3. Collins M. D., Jones D. 1979; The distribution of isoprenoid quinones in streptococci of serological groups D and N. J Gen Microbiol 114:27–33 [CrossRef]
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  5. Ennahar S., Cai Y. 2005; Biochemical and genetic evidence for the transfer of Enterococcus solitarius Collins et al. 1989 to the genus Tetragenococcus as Tetragenococcus solitarius comb. nov. Int J Syst Evol Microbiol 55:589–592 [CrossRef]
    [Google Scholar]
  6. Euzéby J. P. 1997; List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592 [CrossRef]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  9. Fortina M. G., Ricci G., Mora D., Manachini P. L. 2004; Molecular analysis of artisanal Italian cheeses reveals Enterococcus italicus sp. nov. Int J Syst Evol Microbiol 54:1717–1721 [CrossRef]
    [Google Scholar]
  10. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  11. Hardie J. M., Whiley R. A. 1997; Classification and overview of the genera Streptococcus and Enterococcus . J Appl Microbiol 83 (Suppl. 1:1S–11S [CrossRef]
    [Google Scholar]
  12. Hucker G. J., Conn H. J. 1923; Method of Gram staining. N Y State Agric Exp Stn Tech Bull 93:3–37
    [Google Scholar]
  13. Ikemoto S., Katoh K., Komagata K. 1978; Cellular fatty acid composition in methanol-utilizing bacteria. J Gen Appl Microbiol 24:41–49 [CrossRef]
    [Google Scholar]
  14. Kihara H., Snell E. E. 1960; Peptides and bacterial growth. J Biol Chem 235:1409–1414
    [Google Scholar]
  15. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  16. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  17. Manero A., Blanch A. B. 1999; Identification of Enterococcus spp. with a biochemical key. Appl Environ Microbiol 65:4425–4430
    [Google Scholar]
  18. Merquior V. L. C., Peralta J. M., Facklam R. R., Teixeira L. M. 1994; Analysis of electrophoretic whole-cell protein profiles as a tool for characterization of Enterococcus species. Curr Microbiol 28:149–153 [CrossRef]
    [Google Scholar]
  19. Naser S. M., Thompson F. L., Hoste B., Gevers D., Dawyndt P., Vancanneyt M., Swings J. 2005; Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141–2150 [CrossRef]
    [Google Scholar]
  20. Naser S. M., Vancanneyt M., Hoste B., Snauwaert C., Vandemeulebroecke K., Swings J. 2006; Reclassification of Enterococcus flavescens Pompei et al. 1992 as a later synonym of Enterococcus casseliflavus ( ex Vaughan et al. 1979) Collins et al. 1984 and Enterococcus saccharominimus Vancanneyt et al. 2004 as a later synonym of Enterococcus italicus Fortina et al. 2004. Int J Syst Evol Microbiol 56:413–416 [CrossRef]
    [Google Scholar]
  21. Okada S., Toyoda T., Kozaki M. 1978; An easy method for the determination of the optical types of lactic acid produced by lactic acid bacteria. Agric Biol Chem 42:1781–1783 [CrossRef]
    [Google Scholar]
  22. Perrière G., Gouy M. 1996; WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369 [CrossRef]
    [Google Scholar]
  23. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  25. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  26. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36 [CrossRef]
    [Google Scholar]
  27. Tanasupawat S., Ezaki T., Suzuki K., Okada S., Komagata K., Kozaki M. 1992; Characterization and identification of Lactobacillus pentosus and Lactobacillus plantarum strains from fermented foods in Thailand. J Gen Appl Microbiol 38:121–134 [CrossRef]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  29. Vancanneyt M., Zamfir M., Devriese L. A., Lefebvre K., Engelbeen K., Vandemeulebroecke K., Amar M., De Vuyst L., Haesebrouck F., Swings J. 2004; Enterococcus saccharominimus sp. nov., from dairy products. Int J Syst Evol Microbiol 54:2175–2179 [CrossRef]
    [Google Scholar]
  30. Whittenbury R. 1963; The use of soft agar in the study of condition affecting the utilization of fermentable substrates by lactic acid bacteria. J Gen Microbiol 32:375–384 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65109-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65109-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error