1887

Abstract

A Gram-positive, aerobic, rod-shaped bacterium (strain Eur1 9.5) was isolated from a 9-m-deep permafrost sample from the Canadian high Arctic. Strain Eur1 9.5 could not be cultivated in liquid medium and grew over the temperature range 5–37 °C; no growth was observed at 42 °C and only slow growth was observed at 5 °C following 1 month of incubation. Eur1 9.5 grew over the pH range 5.5–8.9 and tolerated NaCl concentrations of 0–0.5 % (w/v). Eur1 9.5 grew heterotrophically on complex carbon substrates and chemolithoautotrophically on inorganic sulfur compounds, as demonstrated by growth on sodium thiosulfate and sulfite as sole electron donors. Eur1 9.5 contained iso-C as the major cellular fatty acid and menaquinone 7 (MK-7) as the major respiratory quinone. The cell-wall peptidoglycan was of type A1. The DNA G+C content was 53.1 mol%. The 16S rRNA gene sequence of strain Eur1 9.5 was only distantly related (≤87 % sequence similarity over 1407 bp) to any recognized bacterial species. Based on physiological and phylogenetic analyses, strain Eur1 9.5 is suggested to represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is Eur1 9.5 (=DSM 18773 =JCM 14557).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65101-0
2008-06-01
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/6/1497.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65101-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J.(1990). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef] [Google Scholar]
  2. An, S.-Y., Asahara, M., Goto, K., Kasai, H. & Yokota, A.(2007).Virgibacillus halophilus sp. nov., spore-forming bacteria isolated from soil in Japan. Int J Syst Evol Microbiol 57, 1607–1611.[CrossRef] [Google Scholar]
  3. Atlas, R. M.(1993).Handbook of Microbiological Media. Boca Raton, FL: CRC Press.
  4. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Bandela, A. M., Cardenas, E., Garrity, G. M. & Tiedje, J. M.(2007). The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35, D169–D172.[CrossRef] [Google Scholar]
  5. Gonzalez, J. M. & Saiz-Jimenez, C.(2002). A fluorometric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4, 770–773.[CrossRef] [Google Scholar]
  6. Goto, K., Mochida, K., Asahara, M., Suzuki, M., Kasai, H. & Yokota, A.(2003).Alicyclobacillus pomorum sp. nov., a novel thermo-acidophilic, endospore-forming bacterium that does not possess ω-alicyclic fatty acids, and emended description of the genus Alicyclobacillus. Int J Syst Evol Microbiol 53, 1537–1544.[CrossRef] [Google Scholar]
  7. Goto, K., Mochida, K., Kato, Y., Asahara, M., Fujita, R., An, S. Y., Kasai, H. & Yokota, A.(2007). Proposal of six species of moderately thermophilic, acidophilic, endospore-forming bacteria: Alicyclobacillus contaminans sp. nov., Alicyclobacillus fastidiosus sp. nov., Alicyclobacillus kakegawensis sp. nov., Alicyclobacillus macrosporangiidus sp. nov., Alicyclobacillus sacchari sp. nov. and Alicyclobacillus shizuokensis sp. nov. Int J Syst Evol Microbiol 57, 1276–1285.[CrossRef] [Google Scholar]
  8. Heyndrickx, M., Vandemeulebroecke, K., Scheldeman, P., Kersters, K., De Vos, P., Logan, N. A., Aziz, A. M., Ali, N. & Berkeley, R. C. W.(1996). A polyphasic reassessment of the genus Paenibacillus, reclassification of Bacillus lautus (Nakamura 1984) as Paenibacillus lautus comb. nov. and of Bacillus peoriae (Montefusco et al. 1993) as Paenibacillus peoriae comb. nov., and emended descriptions of P. lautus and of P. peoriae. Int J Syst Bacteriol 46, 988–1003.[CrossRef] [Google Scholar]
  9. Heyrman, J., Logan, N. A., Busse, H.-J., Balcaen, A., Lebbe, L., Rodriguez-Diaz, M., Swings, J. & de Vos, P.(2003).Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb. nov., and emended description of the genus Virgibacillus. Int J Syst Evol Microbiol 53, 501–511.[CrossRef] [Google Scholar]
  10. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  11. Karavaiko, G. I., Bogdanova, T. I., Tourova, T. P., Kondrat'eva, T. F., Tsaplina, I. A., Egorova, M. A., Krasil'nikova, E. N. & Zakharchuk, L. M.(2005). Reclassification of ‘Sulfobacillus thermosulfidooxidans subsp. thermotolerans’ strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus. Int J Syst Evol Microbiol 55, 941–947.[CrossRef] [Google Scholar]
  12. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  13. Rhuland, L. E., Work, E., Denman, R. F. & Hoare, D. S.(1955). The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77, 4844–4846.[CrossRef] [Google Scholar]
  14. Sasser, M.(1990).Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  15. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L. K. & Komagata, K.(1997). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47, 289–298.[CrossRef] [Google Scholar]
  16. Steven, B., Léveillé, R., Pollard, W. H. & Whyte, L. G.(2006). Microbial ecology and biodiversity in permafrost. Extremophiles 10, 259–267.[CrossRef] [Google Scholar]
  17. Steven, B., Briggs, G., McKay, C. P., Pollard, W. H., Greer, C. W. & Whyte, L. G.(2007). Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59, 513–523.[CrossRef] [Google Scholar]
  18. Tamura, K. & Nei, M.(1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10, 512–526. [Google Scholar]
  19. Vali, H., Weiss, B., Li, Y.-L., Sears, S. K., Kim, S. S., Kirschvink, J. L. & Zhang, C. L.(2004). Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15. Proc Natl Acad Sci U S A 101, 16121–16126.[CrossRef] [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.65101-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65101-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error