1887

Abstract

Thermophilic (strain GOMI-1) and mesophilic (strain KOME-1) strains were isolated from two different cultures of propionate-degrading consortia obtained from thermophilic digester sludge and rice paddy soil, respectively. The two strains were non-spore-forming, non-motile and Gram-negative. Both strains were obligately anaerobic micro-organisms, showing multicellular filamentous morphotypes more than 100 μm in length. The cell width for strain GOMI-1 was 0.2–0.4 μm and that of strain KOME-1 was 0.4–0.6 μm. Strain GOMI-1 could grow at 45–65 °C with a pH range of 6.0–7.5 (optimum growth at 55 °C, pH 7.0). The temperature range for growth of strain KOME-1 was 30–40 °C and the pH range was pH 5.0–8.5 (optimum growth around 37 °C, pH 7.0). Yeast extract was required for growth of both strains. Strain GOMI-1 was able to grow with a number of carbohydrates in the presence of yeast extract. In yeast extract-containing medium, strain KOME-1 could utilize proteins and a limited range of sugars for growth. The G+C contents of the DNA of strains GOMI-1 and KOME-1 were respectively 54.7 and 57.6 mol%. Major fatty acids of strain GOMI-1 were C, C and iso-C, whereas those of strain KOME-1 were iso-C, anteiso-C and C. Based on comparative analysis of 16S rRNA gene sequences of strains GOMI-1 and KOME-1, the strains were placed in different phylogenetic positions in the class of the bacterial phylum . Their phenotypic and genetic traits strongly supported the conclusion that the strains should be described as two independent taxa in the class . Hence, we propose the names gen. nov., sp. nov., and gen. nov., sp. nov., for strains GOMI-1 and KOME-1. The type strains of and are respectively GOMI-1 (=JCM 13669 =DSM 17877) and KOME-1 (=JCM 13670 =KTCC 5380).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65098-0
2007-10-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/10/2299.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65098-0&mimeType=html&fmt=ahah

References

  1. Björnsson, L., Hugenholtz, P., Tyson, G. W. & Blackall, L. L. ( 2002; ). Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiology 148, 2309–2318.
    [Google Scholar]
  2. Doetsch, R. N. ( 1981; ). Determinative methods of light microscopy. In Manual of Methods for General Bacteriology, pp. 21–33. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  3. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  4. Hanada, S., Hiraishi, A., Shimada, K. & Matsuura, K. ( 1995; ). Isolation of Chloroflexus aurantiacus and related thermophilic phototrophic bacteria from Japanese hot springs using an improved isolation procedure. J Gen Appl Microbiol 41, 119–130.[CrossRef]
    [Google Scholar]
  5. Hanada, S., Takaichi, S., Matsuura, K. & Nakamura, K. ( 2002; ). Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52, 187–193.
    [Google Scholar]
  6. Hiraishi, A. ( 1992; ). Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15, 210–213.[CrossRef]
    [Google Scholar]
  7. Hugenholtz, P. & Stackebrandt, E. ( 2004; ). Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). Int J Syst Evol Microbiol 54, 2049–2051.[CrossRef]
    [Google Scholar]
  8. Hugenholtz, P., Pitulle, C., Hershberger, K. L. & Pace, N. R. ( 1998a; ). Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180, 366–376.
    [Google Scholar]
  9. Hugenholtz, P., Goebel, B. M. & Pace, N. R. ( 1998b; ). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180, 4765–4774.
    [Google Scholar]
  10. Hungate, R. E. ( 1969; ). A roll-tube method for cultivation of strict anaerobes. Methods Microbiol 3B, 117–132.
    [Google Scholar]
  11. Imachi, H., Sekiguchi, Y., Kamagata, Y., Ohashi, A. & Harada, H. ( 2000; ). Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66, 3608–3615.[CrossRef]
    [Google Scholar]
  12. Imachi, H., Sekiguchi, Y., Kamagata, Y., Hanada, S., Ohashi, A. & Harada, H. ( 2002; ). Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52, 1729–1735.[CrossRef]
    [Google Scholar]
  13. Imachi, H., Sekiguchi, Y., Kamagata, Y., Loy, A., Qiu, Y.-L., Hugenholtz, P., Kimura, N., Wagner, M., Ohashi, A. & Harada, H. ( 2006; ). Non-sulfate-reducing, syntrophic bacteria affiliated with the Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl Environ Microbiol 72, 2080–2091.[CrossRef]
    [Google Scholar]
  14. Jobb, G. ( 2007; ). treefinder, version of February 2007. Distributed by the author, Munich, Germany. http://www.treefinder.de
  15. Kamagata, Y. & Mikami, E. ( 1991; ). Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41, 191–196.[CrossRef]
    [Google Scholar]
  16. Kindaichi, T., Ito, T. & Okabe, S. ( 2004; ). Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl Environ Microbiol 70, 1641–1650.[CrossRef]
    [Google Scholar]
  17. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  18. Pfennig, N. & Wagener, S. ( 1986; ). An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4, 303–306.[CrossRef]
    [Google Scholar]
  19. Roden, E. E. & Lovley, D. R. ( 1993; ). Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol 59, 734–742.
    [Google Scholar]
  20. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  21. Sekiguchi, Y., Kamagata, Y., Syutsubo, K., Ohashi, A., Harada, H. & Nakamura, K. ( 1998; ). Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology 144, 2655–2665.[CrossRef]
    [Google Scholar]
  22. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H. ( 1999; ). Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65, 1280–1288.
    [Google Scholar]
  23. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H. ( 2000; ). Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50, 771–779.[CrossRef]
    [Google Scholar]
  24. Sekiguchi, Y., Takahashi, H., Kamagata, Y., Ohashi, A. & Harada, H. ( 2001; ). In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl Environ Microbiol 67, 5740–5749.[CrossRef]
    [Google Scholar]
  25. Sekiguchi, Y., Yamada, T., Hanada, S., Ohashi, A., Harada, H. & Kamagata, Y. ( 2003; ). Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53, 1843–1851.[CrossRef]
    [Google Scholar]
  26. Shintani, T., Liu, W.-T., Hanada, S., Kamagata, Y., Miyaoka, S., Suzuki, T. & Nakamura, K. ( 2000; ). Micropruina glycogenica gen. nov., sp. nov., a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 50, 201–207.[CrossRef]
    [Google Scholar]
  27. Swofford, D. L. ( 2002; ). paup*: phylogenetic analysis using parsimony (*and other methods), version 4. Sunderland, MA: Sinauer Associates.
  28. Teske, A., Hinrichs, K. U., Edgcomb, V., de Vera Gomez, A., Kysela, D., Sylva, S. P., Sogin, M. L. & Jannasch, H. W. ( 2002; ). Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68, 1994–2007.[CrossRef]
    [Google Scholar]
  29. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  30. Yamada, T., Sekiguchi, Y., Imachi, H., Kamagata, Y., Ohashi, A. & Harada, H. ( 2005; ). Diversity, localization and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl Environ Microbiol 71, 7493–7503.[CrossRef]
    [Google Scholar]
  31. Yamada, T., Sekiguchi, Y., Hanada, S., Imachi, H., Ohashi, A., Harada, H. & Kamataga, Y. ( 2006; ). Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56, 1331–1340.[CrossRef]
    [Google Scholar]
  32. Zhang, H., Sekiguchi, Y., Hanada, S., Hugenholtz, P., Kim, H., Kamagata, Y. & Nakamura, K. ( 2003; ). Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53, 1155–1163.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65098-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65098-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error