1887

Abstract

The taxonomic status of a light-orange-coloured bacterial isolate from an oil-contaminated soil sample was characterized by using a polyphasic taxonomic approach. Comparative analysis of 16S rRNA gene sequences demonstrated that the isolate belonged phylogenetically to the genus , with , and as its closest phylogenetic relatives (97.3, 97.0 and 97.0 % similarity, respectively). DNA–DNA pairing studies showed that the unidentified organism displayed 25.0, 17.0 and 19.0 % relatedness to the type strains of , and , respectively. The generic assignment was confirmed by chemotaxonomic data, which revealed a fatty acid profile that was characteristic of the genus , consisting of straight-chain saturated and unsaturated fatty acids with C 7 as the major fatty acid, and ubiquinone with ten isoprene units (Q-10) as the predominant respiratory quinone. On the basis of both the phenotypic and molecular genetic evidence, it is proposed that the unknown isolate be classified as a representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is IMMIB AFH-6 (=CCUG 53966=DSM 19657).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65065-0
2008-04-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/4/959.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65065-0&mimeType=html&fmt=ahah

References

  1. Bally, R., Thomas-Bauzon, D., Heulin, T., Balandreau, J., Richard, C. & De Ley, J. ( 1983; ). Determination of the most frequent N2-fixing bacteria in a rice rhizosphere. Can J Microbiol 29, 881–887.[CrossRef]
    [Google Scholar]
  2. Bashan, Y. & Holguin, G. ( 1997; ). Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43, 103–121.[CrossRef]
    [Google Scholar]
  3. Collins, M. D., Pirouz, T., Goodfellow, M. & Minnikin, D. E. ( 1977; ). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100, 221–230.[CrossRef]
    [Google Scholar]
  4. Döbereiner, J. ( 1983; ). Ten years of Azospirillum. In Azospirillum II: Genetics, Physiology, Ecology, pp. 9–23. Edited by W. Klingmüller. Basel: Birkhäuser.
  5. Döbereiner, J., Marriel, I. E. & Nery, M. ( 1976; ). Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 22, 1464–1474.[CrossRef]
    [Google Scholar]
  6. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  9. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  10. Gunarto, L., Adachi, K. & Senboku, T. ( 1999; ). Isolation and selection of indigenous Azospirillum spp. from a subtropical island, and effect of inoculation on growth of lowland rice under several levels of N application. Biol Fertil Soils 28, 129–135.
    [Google Scholar]
  11. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  12. Kirchhof, G., Reis, V. M., Baldani, J. I., Eckert, B., Doebereiner, J. & Hartmann, A. ( 1997; ). Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194, 45–55.[CrossRef]
    [Google Scholar]
  13. Ladha, J. K., So, R. B. & Watanabe, I. ( 1987; ). Composition of Azospirillum species associated with wetland rice plants grown in different soils. Plant Soil 102, 127–129.[CrossRef]
    [Google Scholar]
  14. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  15. Mehnaz, S., Weselwski, B. & Lazarovits, G. ( 2007; ). Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 57, 620–624.[CrossRef]
    [Google Scholar]
  16. Minnikin, D. E., Hutchinson, I. G., Caldicott, A. B. & Goodfellow, M. ( 1980; ). Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188, 221–223.[CrossRef]
    [Google Scholar]
  17. Muratova, A. Iu., Turkovskaia, O. V., Antoniuk, L. P., Makarov, O. E., Pozdniakova, L. I. & Ignatov, V. V. ( 2005; ). Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiology (English translation of Mikrobiologiia) 74, 248–254.
    [Google Scholar]
  18. Okon, Y. ( 1985; ). Azospirillum as a potential inoculant for agriculture. Trends Biotechnol 3, 223–228.[CrossRef]
    [Google Scholar]
  19. Rainey, F. A., Ward-Rainey, N., Kroppenstedt, R. M. & Stackebrandt, E. ( 1996; ). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsiaceae fam. nov. Int J Syst Bacteriol 46, 1088–1092.[CrossRef]
    [Google Scholar]
  20. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  21. Tarrand, J. J., Krieg, N. R. & Dobereiner, J. ( 1978; ). A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov., and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24, 967–980.[CrossRef]
    [Google Scholar]
  22. Xie, C.-H. & Yokota, A. ( 2005; ). Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int J Syst Evol Microbiol 55, 1435–1438.[CrossRef]
    [Google Scholar]
  23. Yassin, A. F. & Hupfer, H. ( 2006; ). Williamsia deligens sp. nov., isolated from human blood. Int J Syst Evol Microbiol 56, 193–197.[CrossRef]
    [Google Scholar]
  24. Yassin, A. F., Chen, W.-M., Hupfer, H., Siering, C., Kroppenstedt, R. M., Arun, A. B., Lai, W.-A., Shen, F.-T., Rekha, P. D. & Young, C. C. ( 2007; ). Lysobacter defluvii sp. nov., isolated from municipal solid waste. Int J Syst Evol Microbiol 57, 1131–1136.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65065-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65065-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error