1887

Abstract

The occurrence of genes encoding nitrogenase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) was investigated in the members of the family . This family forms a separate phylogenetic lineage within the according to 16S rRNA gene sequence analysis and mostly includes photo- and chemoautotrophic halophilic and haloalkaliphilic bacteria. The gene encoding the large subunit of ‘green-like’ form I RubisCO was found in all strains, except the type strains of and . The gene encoding nitrogenase reductase was present in all investigated species of the phototrophic genera , and , but not of the genus . Unexpectedly, fragments were also obtained for the chemotrophic species and , for which diazotrophic potential has not previously been assumed. The -, - and 16S rRNA gene-based trees were not highly congruent in their branching patterns since, in the ‘RubisCO’ and ‘nitrogenase’ trees, representatives of the are divided in a number of broadly distributed clusters and branches. However, the data obtained may be regarded as evidence of the monophyletic origin of the and genes in most species within the family and mainly corresponded to the current taxonomic structure of this family. The phylogeny of the chemolithoautotrophic sulfur-oxidizers and and the nitrifier deviated significantly from the 16S-rRNA gene-based phylogeny. These species clustered with one of the duplicated genes of the purple sulfur bacterium , a member of the family .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65041-0
2007-10-01
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/10/2387.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65041-0&mimeType=html&fmt=ahah

References

  1. Achouak W., Normand P., Heulin T. 1999; Comparative phylogeny of rrs and nifH genes in the Bacillaceae . Int J Syst Bacteriol 49:961–967 [CrossRef]
    [Google Scholar]
  2. Adkins J. P., Madigan M. T., Mandelco L., Woese C. R., Tanner R. S. 1993; Arhodomonas aquaeolei gen. nov., sp. nov., an aerobic, halophilic bacterium isolated from a subterranean brine. Int J Syst Bacteriol 43:514–520 [CrossRef]
    [Google Scholar]
  3. Banciu H., Sorokin D. Y., Galinski E. A., Muyzer G., Kleerebezem R., Kuenen J. G. 2004; Thialkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles 8:325–334
    [Google Scholar]
  4. Boulygina E. S., Kuznetsov B. B., Marusina A. I., Tourova T. P., Kravchenko I. K., Bykova S. A., Kolganova T. V., Galchenko V. F. 2002; A study of nucleotide sequences of nifH genes of some methanotrophic bacteria. Microbiology English translation of Mikrobiologiia 71:425–432 [CrossRef]
    [Google Scholar]
  5. Bryantseva I., Gorlenko V. M., Kompantseva E. I., Imhoff J. F., Suling J., Mityushina L. 1999; Thiorhodospira sibirica gen. nov., sp. nov. a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. Int J Syst Bacteriol 49:697–703 [CrossRef]
    [Google Scholar]
  6. Chadwick L. J., Irgens R. L. 1991; Hydrogen gas production by an Ectothiorhodospira vacuolata strain. Appl Environ Microbiol 57:594–596
    [Google Scholar]
  7. Dahl C., Engels S., Pott-Sperling A. S., Schulte A., Sander J., Lübbe Y., Deuster O., Brune D. C. 2005; Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum . J Bacteriol 187:1392–1404 [CrossRef]
    [Google Scholar]
  8. Dauga C. 2002; Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae : a model molecule for molecular systematic studies. Int J Syst Evol Microbiol 52:531–547
    [Google Scholar]
  9. Delwiche C. F., Palmer J. D. 1996; Rampant horizontal transfer and duplication of RubisCO genes in eubacteria and plastids. Mol Biol Evol 13:873–882 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.53c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  12. Fennoy S. L., Bailey-Serres J. 1993; Synonymous codon usage in Zea mays L. nuclear genes is varied by levels of C and G-ending codons. Nucleic Acids Res 21:5294–5300 [CrossRef]
    [Google Scholar]
  13. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  14. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155:279–284 [CrossRef]
    [Google Scholar]
  15. Gorlenko V. M., Bryantseva I. A., Panteleeva E. E., Tourova T. P., Kolganova T. V., Makhneva Z. K., Moskalenko A. A. 2004; Ectothiorhodosinus mongolicum gen. nov., sp. nov., a new purple bacterium from a soda lake in Mongolia. Microbiology English translation of Mikrobiologiia 7366–73 [CrossRef]
    [Google Scholar]
  16. Hoeft S. E., Switzer Blum J., Stolz J. F., Tabita F. R., Witte B., King G. M., Santini J. M., Oremland R. S. 2007; Alkalilimnicola ehrlichii sp. nov., a novel arsenite-oxidizing, haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 57:504–512 [CrossRef]
    [Google Scholar]
  17. Holmes D. E., Nevin K. P., Lovley D. R. 2004; Comparison of 16S rRNA, nifD , recA , gyrB , rpoB and fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol 54:1591–1599 [CrossRef]
    [Google Scholar]
  18. Imhoff J. F. 2005; Family II. Ectothiorhodospiraceae Imhoff. In Bergey's Manual of Systematic Bacteriology 2nd edn., vol. 2, part B, The Gammaproteobacteria pp 41–52 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  19. Imhoff J. F. 2006; The family Ectothiorhodospiraceae . In The Prokaryotes: a Handbook on the Biology of Bacteria . , 3rd edn. vol 6 pp 874–886 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
  20. Imhoff J. F., Süling J. 1996; The phylogenetic relationship among Ectothiorhodospiraceae . A re-evaluation of their taxonomy on the basis of 16S rDNA analyses. Arch Microbiol 165:106–113 [CrossRef]
    [Google Scholar]
  21. Kämpf C., Pfennig N. 1980; Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum . Arch Microbiol 127:125–135 [CrossRef]
    [Google Scholar]
  22. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  23. Kondratieva E. N., Zhukov V. G., Ivanovsky R. N., Petushkova U. P., Monosov E. Z. 1976; The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol 108:287–292 [CrossRef]
    [Google Scholar]
  24. Lawrence J. G., Hartl D. L., Ochman H. 1991; Molecular considerations in the evolution of bacterial genes. J Mol Evol 33:241–250 [CrossRef]
    [Google Scholar]
  25. Marusina A. I., Boulygina E. S., Kuznetsov B. B., Tourova T. P., Kravchenko I. K., Gal'chenko V. F. 2001; A system of oligonucleotide primers for the amplification of nifH genes of different taxonomic groups of prokaryotes. Microbiology English translation of Mikrobiologiia 70:73–78 [CrossRef]
    [Google Scholar]
  26. Medigue C., Rouxel T., Vigier P., Henaut A., Danchin A. 1991; Evidence for horizontal gene transfer in Escherichia coli speciation. J Mol Biol 222:851–856 [CrossRef]
    [Google Scholar]
  27. Moshkovskii Iu. Sh., Uspenskaia N. Ia., Mardanian S. S. 1971; Effect of nitrogen source in the culture medium on the capability for nitrogen fixation and the Mossbauer spectra of Ectothiorhodospira shaposhnikovii cells. Biofizika 16:933–936 (in Russian
    [Google Scholar]
  28. Nei M., Gojobori T. 1986; Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426
    [Google Scholar]
  29. Ochman H., Davalos L. M. 2006; The nature and dynamics of bacterial genomes. Science 311:1730–1733 [CrossRef]
    [Google Scholar]
  30. Ohtaka C., Ishikawa H. 1993; Accumulation of adenine and thymine in groE -homologous operon of an intracellular symbiont. J Mol Evol 36:121–126 [CrossRef]
    [Google Scholar]
  31. Oremland R. S., Hoeft S. E., Santini J. M., Bano N., Hollibaugh R. A., Hollibaugh J. T. 2002; Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68:4795–4802 [CrossRef]
    [Google Scholar]
  32. Rijkenberg M. J., Kort R., Hellingwerf K. J. 2001; Alkalispirillum mobile gen. nov., spec. nov. an alkaliphilic non-phototrophic member of the Ectothiorhodospiraceae . Arch Microbiol 175:369–375 [CrossRef]
    [Google Scholar]
  33. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Sorokin D. Y., Lysenko A. M., Mityushina L. L., Tourova T. P., Jones B. E., Rainey F. A., Robertson L. A., Kuenen G. J. 2001; Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibiricum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580
    [Google Scholar]
  36. Sorokin D. Y., Tourova T. P., Lysenko A. M., Mityushina L. L., Kuenen J. G. 2002a; Thioalkalivibrio thiocyanoxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria capable of growth on thiocyanate, from soda lakes. Int J Syst Evol Microbiol 52:657–664
    [Google Scholar]
  37. Sorokin D. Y., Gorlenko V. M., Tourova T. P., Tsapin A. I., Nealson K. H., Kuenen G. J. 2002b; Thioalkalimicrobium cyclicum sp. nov. and Thioalkalivibrio jannaschii sp. nov., novel species of haloalkaliphilic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from hypersaline alkaline Mono Lake (California). Int J Syst Evol Microbiol 52:913–920 [CrossRef]
    [Google Scholar]
  38. Sorokin D. Y., Tourova T. P., Kolganova T. V., Sjollema K. A., Kuenen J. G. 2002c; Thioalkalispira microaerophila gen. nov., sp. nov. a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake. Int J Syst Evol Microbiol 52:2175–2182 [CrossRef]
    [Google Scholar]
  39. Sorokin D. Y., Zhilina T. N., Lysenko A. M., Tourova T. P., Spiridonova E. M. 2006; Metabolic versatility of haloalkaliphilic bacteria from soda lakes belonging to the Alkalispirillum - Alkalilimnicola group. Extremophiles 10:213–220 [CrossRef]
    [Google Scholar]
  40. Spiridonova E. M., Berg I. A., Kolganova T. V., Ivanovskii R. N., Kuznetsov B. B., Tourova T. P. 2004; An oligonucleotide primer system for amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Microbiology English translation of Mikrobiologiia 73:377–387
    [Google Scholar]
  41. Teske A., Alm E., Regan J. M., Toze S., Rittmann B. E., Stahl D. A. 1994; Evolutionary relationship among ammonia- and nitrite-oxidizing bacteria. J Bacteriol 176:6623–6630
    [Google Scholar]
  42. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  43. Tourova T. P. 2003; Copy number of ribosomal operons in prokaryotes and its effect on phylogenetic analyses. Microbiology English translation of Mikrobiologiia 72:389–402 [CrossRef]
    [Google Scholar]
  44. Tourova T. P., Spiridonova E. M., Berg I. A., Kuznetsov B. B., Sorokin D. Yu. 2005; Phylogeny of ribulose-1,5-bisphosphate carboxylase/oxygenase genes in haloalkaliphilic obligately autotrophic sulfur-oxidizing bacteria of the genus Thioalkalivibrio . Microbiology English translation of Mikrobiologiia 74:321–328 [CrossRef]
    [Google Scholar]
  45. Tourova T. P., Spiridonova E. M., Slobodova N. V., Boulygina E. S., Keppen O. I., Kuznetsov B. B., Ivanovsky R. N. 2006; Phylogeny of anoxygenic filamentous phototrophic bacteria of the family Oscillochloridaceae as inferred from comparative analyses of the rrs , cbbL , and nifH genes. Microbiology English translation of Mikrobiologiia 75:192–200 [CrossRef]
    [Google Scholar]
  46. Tsuihiji H., Yamazaki Y., Kamikubo H., Imamoto Y., Kataoka M. 2006; Cloning and characterization of nif structural and regulatory genes in the purple sulfur bacterium, Halorhodospira halophila . J Biosci Bioeng 101:263–270 [CrossRef]
    [Google Scholar]
  47. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  48. Ventura S., Viti C., Pastorelli R., Giovannetti L. 2000; Revision of species delineation in the genus Ectothiorhodospira . Int J Syst Evol Microbiol 50:583–591 [CrossRef]
    [Google Scholar]
  49. Watson G. M., Tabita F. R. 1997; Microbial ribulose-1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. FEMS Microbiol Lett 146:13–22 [CrossRef]
    [Google Scholar]
  50. Watson S. W., Waterbury J. B. 1971; Characteristics of two marine nitrite oxidizing bacteria, Nitrospira gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov.sp. Arch Mikrobiol 77:203–230 [CrossRef]
    [Google Scholar]
  51. Yakimov M. M., Giuliano L., Chernikova T. N., Gentile G., Abraham W.-R., Lünsdorf H., Timmis K. N., Golyshin P. N. 2001; Alcalilimnicola halodurans gen. nov., sp. nov. an alkaliphilic, moderately halophilic and extremely halotolerant bacterium, isolated from sediments of soda-depositing Lake Natron, East Africa Rift Valley. Int J Syst Evol Microbiol 51:2133–2143 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.65041-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65041-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error