1887

Abstract

Gram-negative, facultatively aerobic, chemoheterotrophic, short rod-shaped marine bacterial strains HTCC2662 and HTCC2663, isolated from the Sargasso Sea by using a dilution-to-extinction culturing method, were investigated to determine their taxonomic position. Characterization of the two strains by phenotypic and phylogenetic analyses revealed that they belonged to the same species. The DNA G+C content of strain HTCC2662 was 58.4 mol% and the predominant cellular fatty acids were C 7 (52.5 %), C 2-OH (13.5 %) and C 11-methyl 7 (12.2 %). Phylogenetic analysis of the 16S rRNA gene sequences showed that the strains represented a distinct line of descent within the genus , with highest sequence similarities to DSM 5823 (97.2 %), DSM 11314 (96.5 %) and DSM 15171 (95.6 %). Several phenotypic characteristics, including facultatively requiring NaCl and oxygen for growth, together with the cellular fatty acid composition, differentiated strain HTCC2662 from other members of the genus . Based on phenotypic, chemotaxonomic and phylogenetic traits, it is suggested that strains HTCC2662 and HTCC2663 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HTCC2662 (=KCCM 42378=NBRC 102038).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65032-0
2007-08-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/8/1815.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65032-0&mimeType=html&fmt=ahah

References

  1. Cho, J.-C. & Giovannoni, S. J. ( 2003; ). Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the α-Proteobacteria. Int J Syst Evol Microbiol 53, 1031–1036.[CrossRef]
    [Google Scholar]
  2. Connon, S. A. & Giovannoni, S. J. ( 2002; ). High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68, 3878–3885.[CrossRef]
    [Google Scholar]
  3. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  4. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  5. González, J. M., Covert, J. S., Whitman, W. B., Henriksen, J. R., Mayer, F., Scharf, B., Schmitt, R., Buchan, A., Fuhrman, J. A. & other authors ( 2003; ). Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 53, 1261–1269.[CrossRef]
    [Google Scholar]
  6. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  7. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  8. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  9. Petursdottir, S. K. & Kristjansson, J. K. ( 1997; ). Silicibacter lacuscaerulensis gen. nov., sp. nov., a mesophilic moderately halophilic bacterium characteristic of the Blue Lagoon geothermal lake in Iceland. Extremophiles 1, 94–99.[CrossRef]
    [Google Scholar]
  10. Rüger, H. J. & Höfle, M. G. ( 1992; ). Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int J Syst Bacteriol 42, 133–143.[CrossRef]
    [Google Scholar]
  11. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  12. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  13. Swofford, D. L. ( 2002; ). paup*: Phylogenetic analysis using parsimony (* and other methods). Sunderland, MA: Sinauer Associates.
  14. Uchino, Y., Hirata, A., Yokota, A. & Sugiyama, J. ( 1998; ). Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 44, 201–210.[CrossRef]
    [Google Scholar]
  15. Yi, H., Lim, Y. W. & Chun, J. ( 2007; ). Taxonomic evaluation of the genera Ruegeria and Silicibacter: a proposal to transfer the genus Silicibacter Petursdottir & Kristjansson 1999 to the genus Ruegeria Uchino et al. 1999. Int J Syst Evol Microbiol 57, 815–819.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65032-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65032-0
Loading

Data & Media loading...

Supplements

vol. , part 8, pp. 1815 - 1818

A transmission electron micrograph of negatively stained cells of HTCC2662 [PDF](42 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error