1887

Abstract

A strictly anaerobic cellulolytic bacterium, strain CRE21, was isolated from a human faecal sample. Cells were Gram-negative non-motile rods that were about 1.7 μm in length and 0.9 μm in width. Strain CRE21 degraded different types of cellulose and was able to grow on a variety of carbohydrates. Cellulose and sugars were mainly converted to acetate, propionate and succinate. The G+C content of the DNA was 41.1 mol%. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus with highest sequence similarity to the type strain of (98 %). DNA–DNA hybridization results revealed that strain CRE21 was distinct from (40 % DNA–DNA relatedness). Strain CRE21 also showed several characteristics distinct from . In particular, it exhibited different capacity to degrade polysaccharides such as cellulose. On the basis of phylogenetic analysis and the morphological, physiological and biochemical data presented in this study, strain CRE21 can be readily differentiated from recognized species of the genus . The name sp. nov. is proposed to accommodate this organism. The type strain is CRE21 (=DSM 14838=CCUG 44979).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64998-0
2007-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/7/1516.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64998-0&mimeType=html&fmt=ahah

References

  1. Bakir M. A., Kitahara M., Sakamoto M., Matsumoto M., Benno Y. 2006a; Bacteroides intestinalis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56:151–154 [CrossRef]
    [Google Scholar]
  2. Bakir M. A., Kitahara M., Sakamoto M., Matsumoto M., Benno Y. 2006b; Bacteroides finegoldii sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56:931–935 [CrossRef]
    [Google Scholar]
  3. Bakir M. A., Sakamoto M., Kitahara M., Matsumoto M., Benno Y. 2006c; Bacteroides dorei sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56:1639–1643 [CrossRef]
    [Google Scholar]
  4. Bernalier A., Willems A., Leclerc M., Rochet V., Collins M. D. 1996; Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Arch Microbiol 166:176–183 [CrossRef]
    [Google Scholar]
  5. Bétian H. G., Linehan B. A., Bryant M. P., Holderman L. V. 1977; Isolation of cellulolytic Bacteroides sp. from human feces. Appl Environ Microbiol 33:1009–1010
    [Google Scholar]
  6. Cashion P., Hodler-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  8. Forano E., Brousolle V., Gaudet G., Bryant J. A. 1994; Molecular cloning, expression and characterization of a new endoglucanase gene from Fibrobacter succinogenes S85. Curr Microbiol 28:7–14 [CrossRef]
    [Google Scholar]
  9. Harmsen H. M. J., Raangs G. C., Degener J. E., Welling G. W. 2002; Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl Environ Microbiol 68:2982–2990 [CrossRef]
    [Google Scholar]
  10. Holdeman L. V., Moore W. E. C. 1974; Gram-negative anaerobic bacteria. In Bergey's Manual of Determinative Bacteriology , 8th edn. pp  384–385 Edited by Buchanan R. E., Gibbons N. E. Baltimore: Williams & Wilkins;
    [Google Scholar]
  11. Hungate R. E. 1969; A roll tube method for the cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  12. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  13. Kitahara M., Sakamoto M., Ike M., Sakata S., Benno Y. 2005; Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov. isolated from human faeces. Int J Syst Evol Microbiol 55:2143–2147 [CrossRef]
    [Google Scholar]
  14. Martin S. A., Morrison W. H., Akin D. E. 1998; Fermentation of maize bran, oat bran and wheat bran by Bacteroides ovatus V975. Curr Microbiol 36:90–95 [CrossRef]
    [Google Scholar]
  15. Miyagawa E., Azuma R., Suto T. 1979; Cellular fatty acid composition in Gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25:41–51 [CrossRef]
    [Google Scholar]
  16. Mosoni P., Besle J. M., Cornu A., Duran H., Jouany J. P. 1993; Wheat lignin labelling using [U-14C] phenylalanine or [ O -14CH3] sinapic acid for fermentation studies. J Agric Food Chem 41:1349–1354 [CrossRef]
    [Google Scholar]
  17. Nicholas K. B., Nicholas H. B. Jr, Deerfield D. W. II 1997; GeneDoc: analysis and visualization of genetic variation. EMBnet News 4:21–4 http://www.embnet.org/download/embnetnews/embnet_news_4_2.pdf
    [Google Scholar]
  18. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  19. Pearson W. R., Lipman D. J. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441 [CrossRef]
    [Google Scholar]
  20. Robert C., Bernalier-Donadille A. 2003; The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiol Ecol 46:81–89 [CrossRef]
    [Google Scholar]
  21. Robert C., Del'Homme C., Bernalier-Donadille A. 2001; Interspecies H2 transfer in cellulose degradation between fibrolytic bacteria and H2-utilizing microorganisms from the human colon. FEMS Microbiol Lett 205:209–214 [CrossRef]
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  23. Salyers A. A. 1984; Bacteroides of the human lower digestive tract. Annu Rev Microbiol 38:293–313 [CrossRef]
    [Google Scholar]
  24. Salyers A. A. 1995; Fermentation of polysaccharides by human colonic anaerobes. In Dietary Fibre pp  29–35 Edited by Cherbut C., Barry J. L., Lairon D., Durand M. Paris: John Libbey Eurotext;
    [Google Scholar]
  25. Salyers A. A., Gherardini F., O'Brien M. 1981; Utilization of xylan by two species of human colonic Bacteroides . Appl Environ Microbiol 41:1065–1068
    [Google Scholar]
  26. Shah H. N. 1992; The genus Bacteroides and related taxa. In The Prokaryotes , 2nd edn. pp  3593–3605 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Scheifer K.-H. New York: Springer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64998-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64998-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error