sp. nov., an anaerobic, syntrophic, long-chain fatty-acid-oxidizing bacterium isolated from methanogenic sludge Free

Abstract

A mesophilic, syntrophic, fatty-acid-oxidizing anaerobic strain, designated MPA, was isolated from granular sludge in a mesophilic upflow anaerobic sludge blanket reactor used to treat palm oil mill effluent. Cells were slightly curved, non-motile rods. Spore formation was not observed. The optimal temperature for growth was around 37 °C and optimal pH for growth was 7.0. Strain MPA was able to grow on crotonate or pentenoate plus butyrate in pure culture. In co-culture with the hydrogenotrophic methanogen , strain MPA was able to oxidize straight-chain saturated fatty acids with carbon chain lengths of C4–C18. The strain was unable to utilize sulfate, sulfite, thiosulfate, nitrate, fumarate, iron(III) or DMSO as an electron acceptor. The G+C content of the DNA was 45.0 mol%. Based on comparative 16S rRNA gene sequence analysis, strain MPA was found to be a member of the genus and was most closely related to the type strains of and (sequence similarities of 94 %). Genetic and phenotypic characteristics demonstrated that strain MPA represents a novel species, for which the name sp. nov. is proposed. The type strain is MPA (=JCM 14374=NBRC 102128=DSM 18709).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64981-0
2007-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/9/2137.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64981-0&mimeType=html&fmt=ahah

References

  1. Acinas S. G., Marcelino L. A., Klepac-Ceraj V., Polz M. F. 2004; Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186:2629–2635 [CrossRef]
    [Google Scholar]
  2. Amann R. I., Ludwig W., Schleifer K. H. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169
    [Google Scholar]
  3. Beaty P. S., McInerney M. J. 1987; Growth of Syntrophomonas wolfei in pure culture on crotonate. Arch Microbiol 147:389–393 [CrossRef]
    [Google Scholar]
  4. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology . pp 21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
  5. Evguenieva-Hackenberg E. 2005; Bacterial ribosomal RNA in pieces. Mol Microbiol 57:318–325 [CrossRef]
    [Google Scholar]
  6. Hatamoto M., Imachi H., Ohashi A., Harada H. 2007; Identification and cultivation of anaerobic, syntrophic long-chain fatty acid degrading microbes from mesophilic and thermophilic methanogenic sludges. Appl Environ Microbiol 73:1332–1340 [CrossRef]
    [Google Scholar]
  7. Henson J. M., McInerney M. J., Beaty P. S., Nickels J., White D. C. 1988; Phospholipid fatty acid composition of the syntrophic anaerobic bacterium Syntrophomonas wolfei . Appl Environ Microbiol 54:1570–1574
    [Google Scholar]
  8. Imachi H., Sekiguchi Y., Kamagata Y., Hanada S., Ohashi A., Harada H. 2002; Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52:1729–1735 [CrossRef]
    [Google Scholar]
  9. Jackson B. E., Bhupathiraju V. K., Tanner R. S., Woese C. R., McInerney M. J. 1999; Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171:107–114 [CrossRef]
    [Google Scholar]
  10. Kamagata Y., Mikami E. 1991; Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41:191–196 [CrossRef]
    [Google Scholar]
  11. Kucivilize P., Ohashi A., Harada H. 2003; Process performance and sludge behaviors of multi-staged UASB reactor for treatment of palm oil mill effluent (POME). Environ Eng Res 40:441–449 (in Japanese)
    [Google Scholar]
  12. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  13. Lorowitz W. H., Zhao H., Bryant M. P. 1989; Syntrophomonas wolfei subsp. saponavida subsp. nov., a long-chain fatty-acid-degrading, anaerobic, syntrophic bacterium; Syntrophomonas wolfei subsp. wolfei subsp. nov.; and emended descriptions of the genus and species. Int J Syst Bacteriol 39:122–126 [CrossRef]
    [Google Scholar]
  14. McInerney M. J., Bryant M. P., Pfennig N. 1979; Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122:129–135 [CrossRef]
    [Google Scholar]
  15. McInerney M. J., Bryant M. P., Hespell R. B., Costerton J. W. 1981; Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039
    [Google Scholar]
  16. Qiu Y. L., Sekiguchi Y., Imachi H., Kamagata Y., Tseng I. C., Cheng S. S., Ohashi A., Harada H. 2004; Identification and isolation of anaerobic, syntrophic phthalate isomer-degrading microbes from methanogenic sludges treating wastewater from terephthalate manufacturing. Appl Environ Microbiol 70:1617–1626 [CrossRef]
    [Google Scholar]
  17. Rainey F. A., Ward-Rainey N. L., Janssen P. H., Hippe H., Stackebrandt E. 1996; Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology 142:2087–2095 [CrossRef]
    [Google Scholar]
  18. Roy F., Samain E., Dubourguier H. C., Albagac G. 1986; Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch Microbiol 145:142–147 [CrossRef]
    [Google Scholar]
  19. Schink B. 1997; Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280
    [Google Scholar]
  20. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H. 2000; Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779 [CrossRef]
    [Google Scholar]
  21. Sekiguchi Y., Uyeno Y., Sunaga A., Yoshida H., Kamagata Y. 2005; Sequence-specific cleavage of 16S rRNA for rapid and quantitative detection of particular groups of anaerobes in bioreactors. Water Sci Technol 52:107–113
    [Google Scholar]
  22. Sekiguchi Y., Imachi H., Susilorukmi A., Muramatsu M., Ohashi A., Harada H., Hanada S., Kamagata Y. 2006; Tepidanaerobacter syntrophicus gen. nov., sp. nov. an anaerobic, moderately thermophilic, syntrophic alcohol- and lactate-degrading bacterium isolated from thermophilic digested sludges. Int J Syst Evol Microbiol 56:1621–1629 [CrossRef]
    [Google Scholar]
  23. Sousa D. Z., Smidt H., Alves M. M., Stams A. J. M. 2007; Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long chain fatty acids in co-culture with Methanobacterium formicicum . Int J Syst Evol Microbiol 57:609–615 [CrossRef]
    [Google Scholar]
  24. Stieb M., Schink B. 1985; Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Arch Microbiol 140:387–390 [CrossRef]
    [Google Scholar]
  25. Svetlitshnyi V., Rainey F., Wiegel J. 1996; Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacteriol 46:1131–1137 [CrossRef]
    [Google Scholar]
  26. Takai K., Nealson K. H., Horikoshi K. 2004; Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the ϵ-Proteobacteria , isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54:25–32 [CrossRef]
    [Google Scholar]
  27. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  28. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  29. Wu C., Liu X., Dong X. 2006; Syntrophomonas cellicola sp. nov., a spore-forming syntrophic bacterium isolated from a distilled-spirit-fermenting cellar, and assignment of Syntrophospora bryantii to Syntrophomonas bryantii comb. nov. Int J Syst Evol Microbiol 56:2331–2335 [CrossRef]
    [Google Scholar]
  30. Zhang C., Liu X., Dong X. 2004; Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. Int J Syst Evol Microbiol 54:969–973 [CrossRef]
    [Google Scholar]
  31. Zhang C., Liu X., Dong X. 2005; Syntrophomonas erecta sp. nov., a novel anaerobe that syntrophically degrades short-chain fatty acids. Int J Syst Evol Microbiol 55:799–803 [CrossRef]
    [Google Scholar]
  32. Zhao H. X., Yang D. C., Woese C. R., Bryant M. P. 1990; Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture. Int J Syst Bacteriol 40:40–44 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64981-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64981-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed