1887

Abstract

A mesophilic, syntrophic, fatty-acid-oxidizing anaerobic strain, designated MPA, was isolated from granular sludge in a mesophilic upflow anaerobic sludge blanket reactor used to treat palm oil mill effluent. Cells were slightly curved, non-motile rods. Spore formation was not observed. The optimal temperature for growth was around 37 °C and optimal pH for growth was 7.0. Strain MPA was able to grow on crotonate or pentenoate plus butyrate in pure culture. In co-culture with the hydrogenotrophic methanogen , strain MPA was able to oxidize straight-chain saturated fatty acids with carbon chain lengths of C4–C18. The strain was unable to utilize sulfate, sulfite, thiosulfate, nitrate, fumarate, iron(III) or DMSO as an electron acceptor. The G+C content of the DNA was 45.0 mol%. Based on comparative 16S rRNA gene sequence analysis, strain MPA was found to be a member of the genus and was most closely related to the type strains of and (sequence similarities of 94 %). Genetic and phenotypic characteristics demonstrated that strain MPA represents a novel species, for which the name sp. nov. is proposed. The type strain is MPA (=JCM 14374=NBRC 102128=DSM 18709).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64981-0
2007-09-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/9/2137.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64981-0&mimeType=html&fmt=ahah

References

  1. Acinas, S. G., Marcelino, L. A., Klepac-Ceraj, V. & Polz, M. F. ( 2004; ). Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186, 2629–2635.[CrossRef]
    [Google Scholar]
  2. Amann, R. I., Ludwig, W. & Schleifer, K. H. ( 1995; ). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143–169.
    [Google Scholar]
  3. Beaty, P. S. & McInerney, M. J. ( 1987; ). Growth of Syntrophomonas wolfei in pure culture on crotonate. Arch Microbiol 147, 389–393.[CrossRef]
    [Google Scholar]
  4. Doetsch, R. N. ( 1981; ). Determinative methods of light microscopy. In Manual of Methods for General Bacteriology, pp. 21–33. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  5. Evguenieva-Hackenberg, E. ( 2005; ). Bacterial ribosomal RNA in pieces. Mol Microbiol 57, 318–325.[CrossRef]
    [Google Scholar]
  6. Hatamoto, M., Imachi, H., Ohashi, A. & Harada, H. ( 2007; ). Identification and cultivation of anaerobic, syntrophic long-chain fatty acid degrading microbes from mesophilic and thermophilic methanogenic sludges. Appl Environ Microbiol 73, 1332–1340.[CrossRef]
    [Google Scholar]
  7. Henson, J. M., McInerney, M. J., Beaty, P. S., Nickels, J. & White, D. C. ( 1988; ). Phospholipid fatty acid composition of the syntrophic anaerobic bacterium Syntrophomonas wolfei. Appl Environ Microbiol 54, 1570–1574.
    [Google Scholar]
  8. Imachi, H., Sekiguchi, Y., Kamagata, Y., Hanada, S., Ohashi, A. & Harada, H. ( 2002; ). Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52, 1729–1735.[CrossRef]
    [Google Scholar]
  9. Jackson, B. E., Bhupathiraju, V. K., Tanner, R. S., Woese, C. R. & McInerney, M. J. ( 1999; ). Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171, 107–114.[CrossRef]
    [Google Scholar]
  10. Kamagata, Y. & Mikami, E. ( 1991; ). Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41, 191–196.[CrossRef]
    [Google Scholar]
  11. Kucivilize, P., Ohashi, A. & Harada, H. ( 2003; ). Process performance and sludge behaviors of multi-staged UASB reactor for treatment of palm oil mill effluent (POME). Environ Eng Res 40, 441–449 (in Japanese)
    [Google Scholar]
  12. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  13. Lorowitz, W. H., Zhao, H. & Bryant, M. P. ( 1989; ). Syntrophomonas wolfei subsp. saponavida subsp. nov., a long-chain fatty-acid-degrading, anaerobic, syntrophic bacterium; Syntrophomonas wolfei subsp. wolfei subsp. nov.; and emended descriptions of the genus and species. Int J Syst Bacteriol 39, 122–126.[CrossRef]
    [Google Scholar]
  14. McInerney, M. J., Bryant, M. P. & Pfennig, N. ( 1979; ). Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122, 129–135.[CrossRef]
    [Google Scholar]
  15. McInerney, M. J., Bryant, M. P., Hespell, R. B. & Costerton, J. W. ( 1981; ). Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41, 1029–1039.
    [Google Scholar]
  16. Qiu, Y. L., Sekiguchi, Y., Imachi, H., Kamagata, Y., Tseng, I. C., Cheng, S. S., Ohashi, A. & Harada, H. ( 2004; ). Identification and isolation of anaerobic, syntrophic phthalate isomer-degrading microbes from methanogenic sludges treating wastewater from terephthalate manufacturing. Appl Environ Microbiol 70, 1617–1626.[CrossRef]
    [Google Scholar]
  17. Rainey, F. A., Ward-Rainey, N. L., Janssen, P. H., Hippe, H. & Stackebrandt, E. ( 1996; ). Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology 142, 2087–2095.[CrossRef]
    [Google Scholar]
  18. Roy, F., Samain, E., Dubourguier, H. C. & Albagac, G. ( 1986; ). Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch Microbiol 145, 142–147.[CrossRef]
    [Google Scholar]
  19. Schink, B. ( 1997; ). Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61, 262–280.
    [Google Scholar]
  20. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H. ( 2000; ). Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50, 771–779.[CrossRef]
    [Google Scholar]
  21. Sekiguchi, Y., Uyeno, Y., Sunaga, A., Yoshida, H. & Kamagata, Y. ( 2005; ). Sequence-specific cleavage of 16S rRNA for rapid and quantitative detection of particular groups of anaerobes in bioreactors. Water Sci Technol 52, 107–113.
    [Google Scholar]
  22. Sekiguchi, Y., Imachi, H., Susilorukmi, A., Muramatsu, M., Ohashi, A., Harada, H., Hanada, S. & Kamagata, Y. ( 2006; ). Tepidanaerobacter syntrophicus gen. nov., sp. nov., an anaerobic, moderately thermophilic, syntrophic alcohol- and lactate-degrading bacterium isolated from thermophilic digested sludges. Int J Syst Evol Microbiol 56, 1621–1629.[CrossRef]
    [Google Scholar]
  23. Sousa, D. Z., Smidt, H., Alves, M. M. & Stams, A. J. M. ( 2007; ). Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long chain fatty acids in co-culture with Methanobacterium formicicum. Int J Syst Evol Microbiol 57, 609–615.[CrossRef]
    [Google Scholar]
  24. Stieb, M. & Schink, B. ( 1985; ). Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Arch Microbiol 140, 387–390.[CrossRef]
    [Google Scholar]
  25. Svetlitshnyi, V., Rainey, F. & Wiegel, J. ( 1996; ). Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacteriol 46, 1131–1137.[CrossRef]
    [Google Scholar]
  26. Takai, K., Nealson, K. H. & Horikoshi, K. ( 2004; ). Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the ϵ-Proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54, 25–32.[CrossRef]
    [Google Scholar]
  27. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  28. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  29. Wu, C., Liu, X. & Dong, X. ( 2006; ). Syntrophomonas cellicola sp. nov., a spore-forming syntrophic bacterium isolated from a distilled-spirit-fermenting cellar, and assignment of Syntrophospora bryantii to Syntrophomonas bryantii comb. nov. Int J Syst Evol Microbiol 56, 2331–2335.[CrossRef]
    [Google Scholar]
  30. Zhang, C., Liu, X. & Dong, X. ( 2004; ). Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. Int J Syst Evol Microbiol 54, 969–973.[CrossRef]
    [Google Scholar]
  31. Zhang, C., Liu, X. & Dong, X. ( 2005; ). Syntrophomonas erecta sp. nov., a novel anaerobe that syntrophically degrades short-chain fatty acids. Int J Syst Evol Microbiol 55, 799–803.[CrossRef]
    [Google Scholar]
  32. Zhao, H. X., Yang, D. C., Woese, C. R. & Bryant, M. P. ( 1990; ). Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture. Int J Syst Bacteriol 40, 40–44.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64981-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64981-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2137 - 2142

Cell morphology of strain MPA grown on crotonate. [PDF](87 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error