1887

Abstract

Three Gram-negative, anaerobic, rod-shaped bacteria (strains CB40, CB41 and CB42) were isolated from human faeces. Based on phylogenetic analysis and specific phenotypic characteristics, these strains were included in the genus , and 16S rRNA gene sequence analysis indicated that these strains represented a novel species. The strains were most closely related to the type strains of and , with sequence similarities of 93.4 and 89.8 %, respectively. The G+C content of strain CB42 is 44.7 mol%. Major fatty acids were anteiso-C, C, iso-C 3-OH and C 9. On the basis of the data presented, a novel species, sp. nov., is proposed, with CB42 (=JCM 13818=DSM 18228) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64979-0
2007-06-01
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/6/1323.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64979-0&mimeType=html&fmt=ahah

References

  1. Bakir M. A., Kitahara M., Sakamoto M., Matsumoto M., Benno Y. 2006a; Bacteroides intestinalis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56:151–154 [CrossRef]
    [Google Scholar]
  2. Bakir M. A., Kitahara M., Sakamoto M., Matsumoto M., Benno Y. 2006b; Bacteroides finegoldii sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56:931–935 [CrossRef]
    [Google Scholar]
  3. Bakir M. A., Sakamoto M., Matsumoto M., Kitahara M., Benno Y. 2006c; Bacteroides dorei sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56:1639–1643 [CrossRef]
    [Google Scholar]
  4. Benno Y., Endo K., Mizutani T., Namba Y., Komori T., Mitsuoka T. 1989; Comparison of fecal microflora of elderly persons in rural and urban areas of Japan. Appl Environ Microbiol 55:1100–1105
    [Google Scholar]
  5. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A. 2005; Diversity of the human intestinal microbial flora. Science 308:1635–1638 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Finegold S. M., Sutter V. L., Mathisen G. E. 1983; Normal indigenous flora. In Human Intestinal Microflora in Health and Disease pp  3–31 Edited by Hentges D. J. New York: Academic Press;
    [Google Scholar]
  8. Hayashi H., Sakamoto M., Benno Y. 2002a; Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46:535–548 [CrossRef]
    [Google Scholar]
  9. Hayashi H., Sakamoto M., Benno Y. 2002b; Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiol Immunol 46:819–831 [CrossRef]
    [Google Scholar]
  10. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe Laboratory Manual , 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating the evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  12. Kitahara M., Takamine F., Imamura T., Benno Y. 2001; Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7 α -dehydroxylating activity. Int J Syst Evol Microbiol 51:39–44
    [Google Scholar]
  13. Kitahara M., Sakamoto M., Ike M., Sakata S., Benno Y. 2005; Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 55:2143–2147 [CrossRef]
    [Google Scholar]
  14. Lan P. T. N., Sakamoto M., Sakata S., Benno Y. 2006; Bacteroides barnesiae sp. nov., Bacteroides salanitronis sp. nov. and Bacteroides gallinarum sp. nov., isolated from chicken caecum. Int J Syst Evol Microbiol 56:2853–2859 [CrossRef]
    [Google Scholar]
  15. Matsuki T., Watanabe K., Fujimoto J., Takada T., Tanaka R. 2004; Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 70:7220–7228 [CrossRef]
    [Google Scholar]
  16. Mayberry W. R., Lambe D. W. Jr, Ferguson K. P. 1982; Identification of Bacteroides species by cellular fatty acid profiles. Int J Syst Bacteriol 32:21–27 [CrossRef]
    [Google Scholar]
  17. Mitsuoka T., Morishita Y., Terada A., Yamamoto S. 1969; A simple method (“plate-in-bottle method”) for the cultivation of fastidious anaerobes. Jpn J Microbiol 13:383–385 [CrossRef]
    [Google Scholar]
  18. Miyagawa E., Azuma R., Suto T. 1979; Cellular fatty acid composition in gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25:41–51 [CrossRef]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  20. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y. 2002; Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52:841–849 [CrossRef]
    [Google Scholar]
  21. Sakamoto M., Suzuki M., Huang Y., Umeda M., Ishikawa I., Benno Y. 2004; Prevotella shahii sp. nov. and Prevotella salivae sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 54:877–883 [CrossRef]
    [Google Scholar]
  22. Sakamoto M., Huang Y., Umeda M., Ishikawa I., Benno Y. 2005; Prevotella multiformis sp. nov., isolated from human subgingival plaque. Int J Syst Evol Microbiol 55:815–819 [CrossRef]
    [Google Scholar]
  23. Sakka K., Furuse S., Shimada K. 1989; Cloning and expression in Escherichia coli of thermophilic Clostridium sp. F1 genes related to cellulose hydrolysis. Agric Biol Chem 53:905–910 [CrossRef]
    [Google Scholar]
  24. Shah H. N., Collins M. D. 1980; Fatty acid and isoprenoid quinone composition in the classification of Bacteroides melaninogenicus and related taxa. J Appl Bacteriol 48:75–87 [CrossRef]
    [Google Scholar]
  25. Shah H. N., Collins M. D. 1983; Genus Bacteroides . A chemotaxonomical perspective. J Appl Bacteriol 55:403–416 [CrossRef]
    [Google Scholar]
  26. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  27. Suau A., Bonnet R., Sutren M., Godon J.-J., Gibson G. R., Collins M. D., Doré J. 1999; Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807
    [Google Scholar]
  28. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  29. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  30. Wilson K. H., Blitchington R. B. 1996; Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62:2273–2278
    [Google Scholar]
  31. Zoetendal E. G., Akkermans A. D., de Vos W. M. 1998; Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.64979-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64979-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error