1887

Abstract

A Gram-negative, rod-shaped bacterium, IG8, was isolated from seawater off the Sanriku coast, Japan. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain IG8 represented a separate lineage within the genus ; the highest 16S rRNA gene sequence similarity values were found with the type strains of (98.6 %) and (98.4 %). DNA–DNA hybridization values between strain IG8 and the type strains of . (27.9–36.1 %) and (11.3–31.0 %) were clearly below 70 %, the generally accepted limit for species delineation. The DNA GC content of strain IG8 was 66.3 mol%. On the basis of DNA–DNA hybridization, some biochemical characteristics and 16S rRNA gene sequence comparison, it is proposed that the isolate represents a novel species, sp. nov. The type strain is IG8 (=IAM 15450=NCIMB 14280).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64978-0
2007-09-01
2020-09-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/9/1966.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64978-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A. 1993 Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Hosoya S., Arunpairojana V., Suwannachart C., Kanjana-Opas A., Yokota A. 2006; Aureispira marina gen. nov., sp. nov., a gliding, arachidonic acid-containing bacterium isolated from the southern coastline of Thailand. Int J Syst Evol Microbiol 56:2931–2935 [CrossRef]
    [Google Scholar]
  5. Ivanova E. P., Zhukova N. V., Lysenko A. M., Gorshkova N. M., Sergeev A. F., Mikhailov V. V., Bowman J. P. 2005; Loktanella agnita sp. nov., and Loktanella rosea sp. nov., from the north-west Pacific Ocean. Int J Syst Evol Microbiol 55:2203–2207 [CrossRef]
    [Google Scholar]
  6. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  7. Lau S. C. K., Tsoi M. M. Y., Li X., Plakhotnikova I., Wu M., Wong P.-K., Quin P.-Y. 2004; Loktanella hongkongensis sp. nov., a novel member of the α - Proteobacteria originating from marine biofilms in Hong Kong waters. Int J Syst Evol Microbiol 54:2281–2284 [CrossRef]
    [Google Scholar]
  8. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  9. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  10. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  11. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Manual of Method for General and Molecular Bacteriology . pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  12. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  13. Van Trappen S., Mergaert J., Swings J. 2004; Loktanella salsilacus gen. nov., sp. nov., Loktanella fryxellensis sp. nov. and Loktanella vestfoldensis sp. nov.,new members of the Rhodobacter group, isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:1263–1269 [CrossRef]
    [Google Scholar]
  14. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  15. Weon H.-Y., Kim B.-Y., Yoo S.-H., Kim J.-S., Kwon S.-W., Go S.-J., Stackebrandt E. 2006; Loktanella koreensis sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 56:2199–2202 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64978-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64978-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error