A novel aerobic, psychrotolerant marine bacterium was isolated at 4 °C from seawater samples collected from Spitzbergen in the Arctic. The strain was a polar-flagellated, Gram-negative bacterium that grew optimally at 10–15 °C and pH 7–8 in media containing 2–3 % NaCl (w/v), using various carbohydrates and organic acids as substrates. The main fatty acid components included 16 : 0 (12.7 % of total fatty acids), straight-chain saturated fatty acid methyl ester (FAME) and 16 : 17 (40.2 %) monounsaturated FAME. Phylogenetic analysis revealed a close relationship (99 % 16S rRNA gene sequence similarity) between the novel isolate and KMM 162 and some other species of the genus . The DNA G+C content of the novel strain was 39 mol%. DNA–DNA hybridization showed only 47.6 % DNA–DNA relatedness with KMM 162, 44.2 % with KMM 638 and 22.6 % with NCIMB 8614. Based on phylogenetic and phenotypic characteristics, this isolate represents a novel species of the genus for which the name is proposed; the type strain is A 37-1-2 (=LMG 23753=DSM 18437).


Article metrics loading...

Loading full text...

Full text loading...



  1. Baumann, L., Baumann, P., Mandel, M. & Allen, R. D.(1972). Taxonomy of aerobic marine eubacteria. J Bacteriol 110, 402–429. [Google Scholar]
  2. Bozal, N., Tudela, E., Rosselló-Mora, R., Lalucat, J. & Guinea, J.(1997).Pseudoalteromonas antarctica sp. nov., isolated from an Antarctic coastal environment. Int J Syst Bacteriol 47, 345–351.[CrossRef] [Google Scholar]
  3. Buchholz-Cleven, B. E. E., Rattunde, B. & Staub, K. L.(1997). Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Syst Appl Microbiol 20, 301–309.[CrossRef] [Google Scholar]
  4. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M.(1977). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef] [Google Scholar]
  5. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  6. Deming, J. W.(2002). Psychrophiles and polar regions. Curr Opin Microbiol 5, 301–309.[CrossRef] [Google Scholar]
  7. Feller, G. & Gerday, C.(2003). Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1, 200–208.[CrossRef] [Google Scholar]
  8. Felsenstein, J.(1995).phylip (phylogeny inference package) version 3.65. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  9. Gauthier, G., Gauthier, M. & Christen, R.(1995). Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 45, 755–761.[CrossRef] [Google Scholar]
  10. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors)(1994).Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  11. Huß, V. A. R., Festl, H. & Schleifer, K. H.(1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef] [Google Scholar]
  12. Ivanova, E. P., Chun, J., Romanenko, L. A., Matte, M. E., Mikhailov, V. V., Frolova, G. M., Huq, A. & Colwell, R. R.(2000). Reclassification of Alteromonas distincta Romanenko et al. 1995 as Pseudoalteromonas distincta comb. nov. Int J Syst Evol Microbiol 50, 141–144.[CrossRef] [Google Scholar]
  13. Ivanova, E. P., Romanenko, L. A., Matté, M. H., Matté, G. R., Lysenko, A. M., Simidu, U., Kita-Tsukamoto, K., Sawabe, T., Vysotskii, M. V. & other authors(2001). Retrieval of the species Alteromonas tetraodonis Simidu et al. 1990 as Pseudoalteromonas tetraodonis comb. nov. and emendation of description. Int J Syst Evol Microbiol 51, 1071–1078.[CrossRef] [Google Scholar]
  14. Ivanova, E. P., Sawabe, T., Alexeeva, Y. V., Lysenko, A. M., Gorshkova, N. M., Hayashi, K., Zukova, N. V., Christen, R. & Mikhailov, V. V.(2002).Pseudoalteromonas issachenkonii sp. nov., a bacterium that degrades the thallus of the brown alga Fucus evanescens. Int J Syst Evol Microbiol 52, 229–234. [Google Scholar]
  15. Ivanova, E. P., Bakunina, I. Y., Nedashkovskaya, O. I., Gorshkova, N. M., Alexeeva, Y. V., Zelepuga, E. A., Zvaygintseva, T. N., Nicolau, D. V. & Mikhailov, V. V.(2003). Ecophysiological variabilities in ectohydrolytic enzyme activities of some Pseudoalteromonas species, P. citrea, P. issachenkonii, and P. nigrifaciens. Curr Microbiol 46, 6–10.[CrossRef] [Google Scholar]
  16. Ivanova, E. P., Gorshkova, N. M., Zhukova, N. V., Lysenko, A. M., Zelepuga, E. A., Prokof'eva, N. G., Mikhailov, V. V., Nicolau, D. V. & Christen, R.(2004). Characterization of Pseudoalteromonas distincta-like sea-water isolates and description of Pseudoalteromonas aliena sp. nov. Int J Syst Evol Microbiol 54, 1431–1437.[CrossRef] [Google Scholar]
  17. Jahnke, K. D.(1992).basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15, 61–73.[CrossRef] [Google Scholar]
  18. Kämpfer, P. & Kroppenstedt, R. M.(1996). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef] [Google Scholar]
  19. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  20. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E.(1988). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef] [Google Scholar]
  21. Mesbah, M. & Whitman, W. B.(1989). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr 479, 297–306.[CrossRef] [Google Scholar]
  22. Miller, L. T.(1982). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586. [Google Scholar]
  23. Rainey, F. A. & Stackebrandt, E.(1993). 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia. FEMS Microbiol Lett 113, 125–128.[CrossRef] [Google Scholar]
  24. Romanenko, L. A., Zhukova, N. V., Rohde, M., Lysenko, A. M., Mikhailov, V. V. & Stackebrandt, E.(2003).Pseudoalteromonas agarivorans sp. nov., a novel marine agarolytic bacterium. Int J Syst Evol Microbiol 53, 125–131.[CrossRef] [Google Scholar]
  25. Sawabe, T., Tanaka, R., Iqbal, M. M., Tajima, K., Ezura, Y., Ivanova, E. P. & Christen, R.(2000). Assignment of Alteromonas elyakovii KMM 162T and five strains isolated from spot-wounded fronds of Laminaria japonica to Pseudoalteromonas elyakovii comb. nov. and the extended description of the species. Int J Syst Evol Microbiol 50, 265–271.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error