1887

Abstract

The interrelationships of 27 strains were investigated using sequences and DNA–DNA hybridization. sequence similarities showed a stronger relationship with DNA–DNA relatedness values than did 16S rRNA gene sequence similarities. Additionally, sequence analysis, with interspecies divergence over 5.2 % in most cases, gave better resolution than 16S rRNA gene sequences for the differentiation of strains at the species level. Relationships among species were therefore elucidated on the basis of sequences and DNA–DNA reassociation. Strains of and sp. HG11 were unquestionably grouped in the same genetic species, since they shared 98.7 % sequence similarity and 82–85 % genomic relatedness. The phylogenetically close relationships obtained from sequence analysis (1.7–3.3 % genetic distance) were corroborated by high DNA–DNA relatedness (73–97 %) to support the previous suggestion that and are later heterotypic synonyms of . Our findings will contribute to the clarification of controversial relationships in the genus and also demonstrate that analysis of sequences can be a powerful tool for interspecies study of the genus.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64957-0
2007-06-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/6/1232.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64957-0&mimeType=html&fmt=ahah

References

  1. Caplan A. J., Cyr D. M., Douglas M. G. 1993; Eukaryotic homologues of Escherichia coli DnaJ: a diverse protein family that functions with Hsp70 stress proteins. Mol Biol Cell 4:555–563 [CrossRef]
    [Google Scholar]
  2. Esteve C., Gutierréz, M. C., Ventosa A. 1995; Aeromonas encheleia sp. nov., isolated from European eels. Int J Syst Bacteriol 45:462–466 [CrossRef]
    [Google Scholar]
  3. Ezaki T., Takeuchi N., Liu S. L., Kai A., Yamamoto H., Yabuuchi E. 1988; Small-scale DNA preparation for rapid genetic identification of Campylobacter species without radioisotope. Microbiol Immunol 32:141–150 [CrossRef]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  5. Huys G., Coopman R., Janssen P., Kersters K. 1996; High-resolution genotypic analysis of the genus Aeromonas by AFLP fingerprinting. Int J Syst Bacteriol 46:572–580 [CrossRef]
    [Google Scholar]
  6. Huys G., Kämpfer P., Altwegg M., Coopman R., Janssen P., Gillis M., Kersters K. 1997a; Inclusion of Aeromonas DNA hybridization group 11 in Aeromonas encheleia and extended descriptions of the species Aeromonas eucrenophila and A. encheleia . Int J Syst Bacteriol 47:1157–1164 [CrossRef]
    [Google Scholar]
  7. Huys G., Kämpfer P., Altwegg M., Kersters I., Lamb A., Coopman R., Lüthy-Hottenstein J., Vancanneyt M., Janssen P., Kersters K. 1997b; Aeromonas popoffii sp. nov., a mesophilic bacterium isolated from drinking water production plants and reservoirs. Int J Syst Bacteriol 47:1165–1171 [CrossRef]
    [Google Scholar]
  8. Huys G., Kämpfer P., Swings J. 2001; New DNA-DNA hybridization and phenotypic data on the species Aeromonas ichthiosmia and Aeromonas allosaccharophila : A. ichthiosmia Schubert et al. 1990 is a later synonym of A. veronii Hickman-Brenner et al. 1987. Syst Appl Microbiol 24:177–182 [CrossRef]
    [Google Scholar]
  9. Huys G., Denys R., Swings J. 2002; DNA–DNA reassociation and phenotypic data indicate synonymy between Aeromonas enteropelogenes Schubert et al. 1990 and Aeromonas trota Carnahan et al. 1991. Int J Syst Evol Microbiol 52:1969–1972 [CrossRef]
    [Google Scholar]
  10. Huys G., Cnockaert M., Swings J. 2005; Aeromonas culicicola Pidiyar et al. 2002 is a later subjective synonym of Aeromonas veronii Hickman-Brenner et al. 1987. Syst Appl Microbiol 28:604–609 [CrossRef]
    [Google Scholar]
  11. Itoh Y., Kawamura Y., Kasai H., Shah M. M., Nhung P. H., Yamada M., Sun X., Koyana T., Hayashi M. other authors 2006; dnaJ and gyrB gene sequence relationship among species and strains of genus Streptococcus . Syst Appl Microbiol 29:368–374 [CrossRef]
    [Google Scholar]
  12. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  13. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  14. Łaganowska M., Kaznowski A. 2004; Restriction fragment length polymorphism of 16S-23S rDNA intergenic spacer of Aeromonas spp. Syst Appl Microbiol 27:549–557 [CrossRef]
    [Google Scholar]
  15. Łaganowska M., Kaznowski A. 2005; Polymorphism of Aeromonas spp. tRNA intergenic spacers. Syst Appl Microbiol 28:222–229 [CrossRef]
    [Google Scholar]
  16. La Scola B., Zeaiter Z., Khamis A., Raoult A. 2003; Gene-sequence-based criteria for species definition in bacteriology: the Bartonella paradigm. Trends Microbiol 11:318–321 [CrossRef]
    [Google Scholar]
  17. Liu H., Li Y., Huang X., Kawamura Y., Ezaki T. 2003; Use of the dnaJ gene for the detection and identification of all Legionella pneumophila serogroups and description of the primers used to detect 16S rDNA gene sequences of major members of the genus Legionella . Microbiol Immunol 47:859–869 [CrossRef]
    [Google Scholar]
  18. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  19. Martin-Carnahan A., Joseph S. W. 2005; Genus I. Aeromonas Stanier 1943, 213AL. In Bergey's Manual of Systematic Bacteriology . , 2nd edn. vol. 2, part B pp  557–578 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
  20. Martínez-Murcia A. J. 1999; Phylogenetic positions of Aeromonas encheleia , Aeromonas popoffii , Aeromonas DNA hybridization group 11 and Aeromonas group 501. Int J Syst Bacteriol 49:1403–1408 [CrossRef]
    [Google Scholar]
  21. Martínez-Murcia A. J., Esteve C., Collins M. D. 1992a; Aeromonas allosaccharophila sp. nov., a new mesophilic member of the genus Aeromonas . FEMS Microbiol Lett 91:199–206 [CrossRef]
    [Google Scholar]
  22. Martínez-Murcia A. J., Menlloch S., Collins A. D. 1992b; Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations. Int J Syst Bacteriol 42:412–421 [CrossRef]
    [Google Scholar]
  23. Martínez-Murcia A. J., Soler L., Saavedra M. J., Chacón M. R., Guarro J., Stackebrandt E., Figueras M. J. 2005; Phenotypic, genotypic, and phylogenetic discrepancies to differentiate Aeromonas salmonicida from Aeromonas bestiarum . Int Microbiol 8:259–269
    [Google Scholar]
  24. Miñana-Galbis D., Farfán M., Fusté M. C., Lorén J. G. 2004; Aeromonas molluscorum sp. nov., isolated from bivalve molluscs. Int J Syst Evol Microbiol 54:2073–2078 [CrossRef]
    [Google Scholar]
  25. Morandi A., Zhaxybayeva O., Gogarten J. P., Graf J. 2005; Evolutionary and diagnostic implications of intragenomic heterogeneity in the 16S rRNA gene in Aeromonas strains. J Bacteriol 187:6561–6564 [CrossRef]
    [Google Scholar]
  26. Pidiyar V., Kaznowski A., Narayan N. B., Patole M., Shouche Y. S. 2002; Aeromonas culicicola sp. nov., from the midgut of Culex quinquefasciatus . Int J Syst Evol Microbiol 52:1723–1728 [CrossRef]
    [Google Scholar]
  27. Saavedra M. J., Figuera M. J., Martínez-Murcia A. J. 2006; Updated phylogeny of the genus Aeromonas . Int J Syst Evol Microbiol 56:2481–2487 [CrossRef]
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  29. Soler L., Yáñez M. A., Chacon M. R., Aguilera-Arreola M. G., Catalán V., Figueras M. J., Martínez-Murcia A. J. 2004; Phylogenetic analysis of the genus Aeromonas based on two housekeeping genes. Int J Syst Evol Microbiol 54:1511–1519 [CrossRef]
    [Google Scholar]
  30. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swing J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  31. Takewaki S., Okuzumi K., Manabe I., Tanimura M., Miyamura K., Nakahara K., Yazaki Y., Ohkubo A., Nagai R. 1994; Nucleotide sequence comparison of the mycobacterial dnaJ gene and PCR-restriction fragment length polymorphism analysis for identification of mycobacterial species. Int J Syst Bacteriol 44:159–166 [CrossRef]
    [Google Scholar]
  32. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  33. Yáñez M. A., Catalán V., Apráiz D., Figueras M. J., Martínez-Murcia A. J. 2003; Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences. Int J Syst Evol Microbiol 53:875–883 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64957-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64957-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error