sp. nov., a producer of an FK506-like immunosuppressant Free

Abstract

Screening of soil samples from the Durmitor National Park, Serbia and Montenegro, for strains producing immunosuppressants with a similar mechanism of action to FK506 resulted in the isolation of the actinomycete strain MS405. Isolate MS405 was found to have morphological and phenotypic properties that were consistent with its classification as a strain. The DNA G+C content of strain MS405 was 72 mol%. 16S rRNA gene sequence data confirmed the taxonomic position of the strain, following the generation of phylogenetic trees by using various treeing algorithms. On the basis of 16S rRNA gene sequence similarity, strain MS405 was shown to belong to the ‘supercluster’, being related to DSM 41785 (99.59 % similarity) and DSM 40500 (99.32 %). The 16S–23S rRNA internally transcribed spacer (ITS) region exhibited variations in length and sequence composition, showing limited usefulness in phylogenetic analyses. However, DNA relatedness values support the classification of this isolate within a novel species. A number of physiological and biochemical tests distinguished strain MS405 from its closest phylogenetic neighbours. Therefore, strain MS405 represents a novel species, for which the name sp. nov. is proposed, with the type strain MS405 (=DSM 41863 =CIP 108995).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64913-0
2007-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/9/2119.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64913-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Atalan E., Manfio G. P., Ward A. C., Kroppenstedt R. M., Goodfellow M. 2000; Biosystematic studies on novel streptomycetes from soil. Antonie van Leeuwenhoek 77:337–353 [CrossRef]
    [Google Scholar]
  3. Becker B., Lechevalier M. P., Lechevalier H. A. 1965; Chemical composition of cell-wall preparations from strains of various formgenera of aerobic actinomycetes. Appl Microbiol 13:236–243
    [Google Scholar]
  4. Chun J., Youn H. D., Yim Y. I., Lee H., Kim M. Y., Hah Y. C., Kang S. O. 1997; Streptomyces seoulensis sp. nov.. Int J Syst Bacteriol 47:492–498 [CrossRef]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  6. Elander R. P. 1987; Microbial screening, selection and strain improvement. In Basic Biotechnology pp 217–251 Edited by Bu'Lock J., Kristiansen B. London: Academic Press;
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1993 phylip (phylogenetic inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  9. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  10. Gascuel O. 1997; BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695 [CrossRef]
    [Google Scholar]
  11. Goodfellow M., Manfio G. P., Chun J. 1997; Towards a practical species concept for cultivable bacteria. In Species: The Units of Diversity . pp 25–29 Edited by Claridge M. F., Dawah H. A., Wilson M. R. London: Chapman & Hall;
  12. Gurtler V., Stanisich V. A. 1996; New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology 142:3–16 [CrossRef]
    [Google Scholar]
  13. Hain T., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E., Rainey F. A. 1997; Discrimination of Streptomyces albidoflavus strains based on the size and number of 16S-23S ribosomal DNA intergenic spacers. Int J Syst Bacteriol 47:202–206 [CrossRef]
    [Google Scholar]
  14. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [CrossRef]
    [Google Scholar]
  15. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate C. P., Smith C. P., Wards J. M., Shrempf H. 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  16. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  17. Jensen M. A., Webster A. J., Straus N. 1993; Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 59:945–952
    [Google Scholar]
  18. Kim S. B., Falconer C., Williams E., Goodfellow M. 1998; Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int J Syst Bacteriol 48:59–68 [CrossRef]
    [Google Scholar]
  19. Kim B., al-Tai A. M., Kim S. B., Somasundaram P., Goodfellow M. 2000; Streptomyces thermocoprophilus sp. nov., a cellulase-free endo-xylanase-producing streptomycete. Int J Syst Evol Microbiol 50:505–509 [CrossRef]
    [Google Scholar]
  20. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  21. Labeda D. P. 1993; DNA relatedness among strains of the Streptomyces lavendulae phenotypic cluster group. Int J Syst Bacteriol 43:822–825 [CrossRef]
    [Google Scholar]
  22. Labeda D. P. 1996; DNA relatedness among verticil-forming Streptomyces species (formerly Streptoverticillium species. Int J Syst Bacteriol 46:699–703 [CrossRef]
    [Google Scholar]
  23. Labeda D. P. 1998; DNA relatedness among the Streptomyces fulvissimus and Streptomyces griseoviridis phenotypic cluster groups. Int J Syst Bacteriol 48:829–832 [CrossRef]
    [Google Scholar]
  24. Lane D. J. 1991; 16S/23S rRNA sequencing. In: Nucleic Acid Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  25. Lechevalier M. P., Lechevalier H. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443 [CrossRef]
    [Google Scholar]
  26. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M. 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  27. Manfio G. P., Atalan E., Zakrewska-Czerwinska J., Mordarski M., Rodriguez C., Collins M. D., Goodfellow M. 2003; Classification of novel soil streptomycetes as Streptomyces aureus sp.nov., Streptomyces laceyi sp. nov. and Streptomyces sanglieri sp. nov. Antonie van Leeuwenhoek 83:245–255 [CrossRef]
    [Google Scholar]
  28. Marchesi J. R., Sato T., Weightman A. J., Martin T. A., Fry J. C., Hiom S. J., Dymock D., Wade W. G. 1998; Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799
    [Google Scholar]
  29. Mehling A., Wehmeier F. U., Piepersberg W. 1995; Nucleotide sequences of streptomycete 16S ribosomal DNA: towards a specific identification system for streptomycetes using PCR. Microbiology 141:2139–2147 [CrossRef]
    [Google Scholar]
  30. Miller J. H. 1992 A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. O'Donnell A. G., Falconer C., Goodfellow M., Ward A. C., Williams E. 1993; Biosystematics and diversity amongst novel carboxydotrophic Actinomycetes . Antonie van Leeuwenhoek 64:325–340
    [Google Scholar]
  32. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behavior of the isomers of α ,ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846 [CrossRef]
    [Google Scholar]
  33. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  34. Seeley H. W. Jr, VanDemark P. J. 1981; Microbes in Action A Laboratory Manual of Microbiology . , 3rd edn. San Francisco: W. H. Freeman;
    [Google Scholar]
  35. Sembiring L., Ward A. C., Goodfellow M. 2000; Selective isolation and characterisation of members of the Streptomyces violaceusniger clade associated with the roots of Paraserianthes falcataria . Antonie van Leeuwenhoek 78:353–366 [CrossRef]
    [Google Scholar]
  36. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  37. Skeggs P. A., Thompson J., Cundliffe E. 1985; Methylation of 16S ribosomal RNA and resistance to aminoglycoside antibiotics in clones of Streptomyces lividans carrying DNA from Streptomyces tenjimaniensis . Mol Gen Genet 200:415–421 [CrossRef]
    [Google Scholar]
  38. Skoko N., Vujovic J., Savic M., Papic N., Vasiljevic B., Ljubijankic G. 2005; Construction of Saccharomyces cerevisiae strain FAV20 useful in detection of immunosuppressants produced by soil actinomycetes. J Microbiol Methods 61:137–140 [CrossRef]
    [Google Scholar]
  39. Song J., Lee S.-C., Kang J.-W., Baek H.-J., Suh J.-W. 2004; Phylogenetic analysis of Streptomyces spp. isolated from potato scab lesions in Korea on the basis of 16S rRNA gene and 16S–23S rDNA intergenic transcribed spacer sequences. Int J Syst Evol Microbiol 54:203–209 [CrossRef]
    [Google Scholar]
  40. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  41. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  42. Umezawa H., Ueda M., Maeda K., Yagishita K., Kondo S., Okami Y., Utahara R., Osato Y., Nitta K., Takeuchi T. 1957; Production and isolation of a new antibiotic: kanamycin. J Antibiot (Tokyo 10:181–188
    [Google Scholar]
  43. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  44. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813
    [Google Scholar]
  45. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64913-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64913-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited Most Cited RSS feed