sp. nov., a member of the isolated from ginseng field soil, and emended description of the genus Free

Abstract

Two bacterial strains, designated Gsoil 322 and Gsoil 328, were isolated from soil of a ginseng field in Pocheon province (Republic of Korea). The strains were Gram-negative, motile, aerobic rods that showed nearly identical physiological profiles and similar chemotaxonomic profiles. The two strains were oxidase-positive but catalase-negative, reduced nitrate to nitrite and had fatty acid profiles in which C, C cyclo and C 7/iso-C 2-OH were predominant. The DNA G+C contents of Gsoil 322 and Gsoil 328 were 66.6 and 66.7 mol%, respectively. Q-8 was observed as the major quinone. Comparative 16S rRNA gene sequence analysis showed that strain Gsoil 322 belongs to the class and was most closely related to ATCC BAA-1232 (97.5 % sequence similarity). On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 322 (=KCTC 12591 =LMG 23394) was classified in the genus as the type strain of a novel species, for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64909-0
2007-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/9/2062.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64909-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  2. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  3. Cappuccino J. G., Sherman N. 2002 Microbiology: a Laboratory Manual , 6th edn. San Francisco: Benjamin Cummings;
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  7. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  8. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [CrossRef]
    [Google Scholar]
  9. Im W.-T., Jung H.-M., Cui Y.-S., Liu Q.-M., Zhang S.-L., Lee S.-T. 2005; Cultivation of the three hundreds of bacterial species from the soil of the ginseng field and mining the novel lineage bacteria. In Proceedings of the International Meeting of the Federation of Korean Microbiological Societies , abstract A035p– 169 Seoul: Federation of Korean Microbiological Societies;
    [Google Scholar]
  10. Kim M. K., Im W.-T., Ohta H., Lee M., Lee S.-T. 2005; Sphingopyxis granuli sp. nov., a β -glucosidase producing bacterium in the family Sphingomonadaceae in α -4 subclass of the Proteobacteria . J Microbiol 43:152–157
    [Google Scholar]
  11. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  12. Kouker G., Jaeger K.-E. 1987; Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213
    [Google Scholar]
  13. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  14. Liu Q.-M., Im W.-T., Lee M., Yang D.-C., Lee S.-T. 2006; Dyadobacter ginsengisoli sp. nov. isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 56:1939–1944 [CrossRef]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  16. Moore D. D., Dowhan D. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp 2–11 Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  17. Nakatsu C. H., Hristova K., Hanada S., Meng X.-Y., Hanson J. R., Scow K. M., Kamagata Y. 2006; Methylibium petroleiphilum gen. nov., sp. nov. a novel methyl tert -butyl ether-degrading methylotroph of the Betaproteobacteria . Int J Syst Evol Microbiol 56:983–989 [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  20. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  21. Ten L. N., Im W.-T., Kim M.-K., Kang M.-S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64909-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64909-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed