1887

Abstract

A Gram-negative, pleomorphic, extremely halophilic archaeon, designated strain XH-70, was isolated from the saline Lake Xilinhot, in Inner Mongolia, China. It formed small (0.9–1.5 mm), red-pigmented, elevated colonies on agar medium. The strain required at least 2.5 M NaCl and 5 mM Mg for growth. The 16S rRNA gene sequence analysis indicated that strain XH-70 belongs to the family , showing 99.5 % similarity to the type strain of and 94.7 and 94.6 % similarity, respectively, to the type strains of and . Polar lipid analysis supported the placement of strain XH-70 in the genus . DNA–DNA hybridization studies (32 % with CGMCC 1.4248), as well as biochemical and physiological characterization, allowed strain XH-70 to be differentiated from . A novel species, sp. nov., is therefore proposed to accommodate this strain. The type strain is XH-70 (=CGMCC 1.6204=DSM 18193=JCM 13892).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64899-0
2007-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/5/1024.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64899-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Dewhirst F. E., Paster B. J., Volcani B. E., Ventosa A. 1996; Phylogenetic analyses of some extremely halophilic archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences. Appl Environ Microbiol 62:3779–3786
    [Google Scholar]
  2. Arahal D. R., García M. T., Ludwig W., Schleifer K. H., Ventosa A. 2001; Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int J Syst Evol Microbiol 51:1443–1448
    [Google Scholar]
  3. Castillo A. M., Gutiérrez M. C., Kamekura M., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A. 2006 Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. Int J Syst Evol Microbiol 56, 765–770 [CrossRef]
  4. De Ley J., Tijtgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 36:461–474 [CrossRef]
    [Google Scholar]
  5. Grant W. D., Kamekura M., McGenity T. J., Ventosa A. 2001; Order I. Halobacteriales Grant and Larsen 1989b, 495VP (Effective publication: Grant and Larsen 1989a, 2216). In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp  294–334 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  6. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Biotechnology . pp  655–681 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  7. Kamekura M. 1993; Lipids of extreme halophiles. In The Biology of Halophilic Bacteria pp  135–161 Edited by Vreeland R. H., Hochstein L. I. Boca Raton, FL: CRC Press;
    [Google Scholar]
  8. Lopez-Garcia P., Moreira D., Lopez-Lopez A., Rodríguez-Valera F. 2001; A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions. Environ Microbiol 3:72–78 [CrossRef]
    [Google Scholar]
  9. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  10. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  11. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  12. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [CrossRef]
    [Google Scholar]
  13. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists , 2nd edn. pp  217–296 Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  14. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  15. Ventosa A. 2006; Unusual micro-organisms from unusual habitats: hypersaline environments. In Prokaryotic Diversity: Mechanisms and Significance (Society for General Microbiology Symposium, no. 66) pp  223–253 Edited by Logan N. A., Lappin-Scott H. M., Oyston P. C. F. Cambridge: Cambridge University Press;
    [Google Scholar]
  16. Ventosa A., Gutiérrez M. C., Kamekura M., Zvyagintseva I. S., Oren A. 2004; Taxonomic study of Halorubrum distributum and proposal of Halorubrum terrestre sp. nov. Int J Syst Evol Microbiol 54:389–392 [CrossRef]
    [Google Scholar]
  17. Wilson K. 1987; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp. 2.4.1–2.4.2 Edited by Ausubel F. M., Bent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A, Struhl K. New York: Wiley;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64899-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64899-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error