1887

Abstract

Phylogenetic analysis and phenotypic characterization were used to assign a multicellular magnetotactic prokaryote the name ‘ Magnetoglobus multicellularis’. ‘ Magnetoglobus multicellularis' lives in a large hypersaline coastal lagoon from Brazil and has properties that are unique among prokaryotes. It consists of a compact assembly or aggregate of flagellated bacterial cells, highly organized in a sphere, that swim in either helical or straight trajectories. The life cycle of ‘ Magnetoglobus multicellularis' is completely multicellular, in which one aggregate grows by enlarging the size of its cells and approximately doubling the volume of the whole organism. Cells then divide synchronously, maintaining the spherical arrangement; finally the cells separate into two identical aggregates. Phylogenetic 16S rRNA gene sequence analysis showed that ‘ Magnetoglobus multicellularis' is related to the dissimilatory sulfate-reducing bacteria within the and to other previously described, but not yet well characterized, multicellular magnetotactic prokaryotes.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64857-0
2007-06-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/6/1318.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64857-0&mimeType=html&fmt=ahah

References

  1. Abreu, F., Silva, K. T., Martins, J. L. & Lins, U. ( 2006; ). Cell viability in magnetotactic multicellular prokaryotes. Int Microbiol 9, 267–272.
    [Google Scholar]
  2. DeLong, E. F., Frankel, R. B. & Bazylinski, D. A. ( 1993; ). Multiple evolutionary origins of magnetotaxis in bacteria. Science 259, 803–806.[CrossRef]
    [Google Scholar]
  3. Farina, M., Lins de Barros, H. G. P., Esquivel, D. M. S. & Danon, J. ( 1983; ). Ultrastructure of a magnetotactic microorganism. Biol Cell 48, 85–88.
    [Google Scholar]
  4. Greenberg, M., Canter, K., Mahler, I. & Tornheim, A. ( 2005; ). Observation of magnetoreceptive behavior in a multicellular magnetotactic prokaryote in higher than geomagnetic fields. Biophys J 88, 1496–1499.[CrossRef]
    [Google Scholar]
  5. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NY. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  6. Keim, C. N., Abreu, F., Lins, U., Barros, H. G. L. & Farina, M. ( 2004a; ). Cell organization and ultrastructure of a magnetotactic multicellular organism. J Struct Biol 145, 254–262.[CrossRef]
    [Google Scholar]
  7. Keim, C. N., Martins, J. L., Abreu, F., Rosado, A. S., Lins de Barros, H. P., Borojevic, R., Lins, U. & Farina, M. ( 2004b; ). Multicellular life cycle of magnetotactic prokaryotes. FEMS Microbiol Lett 240, 203–208.[CrossRef]
    [Google Scholar]
  8. Keim, C. N., Martins, J. L., Lins de Barros, H., Lins, U. & Farina, M. ( 2007; ). Structure, behavior, ecology and diversity of multicellular magnetotactic prokaryotes. In Magnetoreception and Magnetosomes in Bacteria, pp. 103–132. Edited by D. Schüler. Berlin & Heidelberg: Springer.
  9. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  10. Lins, U., Freitas, F., Keim, C. N., Lins de Barros, H., Esquivel, D. M. S. & Farina, M. ( 2003; ). Simple homemade apparatus for harvesting uncultured magnetotactic microorganisms. Braz J Microbiol 34, 111–116.
    [Google Scholar]
  11. Lins, U., Keim, C. N., Evans, F. F., Farina, M. & Buseck, P. R. ( 2007; ). Magnetite (Fe3O4) and greigite (Fe3S4) crystals in multicellular magnetotactic prokaryotes. Geomicrobiol J 24, 43–50.[CrossRef]
    [Google Scholar]
  12. Rodgers, F. G., Blakemore, R. P., Blakemore, N. A., Frankel, R. B., Bazylinski, D. A., Maratea, D. & Rodgers, N. ( 1990; ). Intercellular structure in a many-celled magnetotactic prokaryote. Arch Microbiol 154, 18–22.
    [Google Scholar]
  13. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  14. Sakaguchi, T., Arakaki, A. & Matsunaga, T. ( 2002; ). Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain magnetite particles. Int J Syst Evol Microbiol 52, 215–221.
    [Google Scholar]
  15. Schleifer, K. H., Schüler, D., Spring, S., Weizenegger, M., Amann, R., Ludwig, W. & Köhler, M. ( 1991; ). The genus Magnetospirillum gen. nov. – description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst Appl Microbiol 14, 379–385.[CrossRef]
    [Google Scholar]
  16. Silva, K. T., Abreu, F., Almeida, F. P., Keim, C. N., Farina, M. & Lins, U. ( 2007; ). Flagellar apparatus of south-seeking many-celled magnetotactic prokaryotes. Microsc Res Tech 70, 10–17.[CrossRef]
    [Google Scholar]
  17. Simmons, S. L. & Edwards, K. J. ( 2007; ). Unexpected diversity in populations of the many-celled magnetotactic prokaryote. Environ Microbiol 9, 206–215.[CrossRef]
    [Google Scholar]
  18. Simmons, S. L., Sievert, S. M., Frankel, R. B., Bazylinski, D. A. & Edwards, K. J. ( 2004; ). Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl Environ Microbiol 70, 6230–6239.[CrossRef]
    [Google Scholar]
  19. Spring, S., Lins, U., Amann, R., Schleifer, K., Ferreira, L. C. S., Esquivel, D. M. S. & Farina, M. ( 1998; ). Phylogenetic affiliation and ultrastructure of uncultured magnetic bacteria with unusually large magnetosomes. Arch Microbiol 169, 136–147.[CrossRef]
    [Google Scholar]
  20. Winklhofer, M., Abraçado, L. G., Davila, A. F., Keim, C. N. & Lins de Barros, H. G. P. ( 2007; ). Magnetic optimization in a multicellular magnetotactic organism. Biophys J 92, 661–670.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64857-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64857-0
Loading

Data & Media loading...

Supplements

(A) Distribution of ' Magnetoglobus multicellularis' based on forward (size) and side (cell complexity) scatter detection in the flow cytometer. Note the presence of two populations. The scanning electron microscopy images represent these micro-organisms in different stages of their life cycle. (B) Cell size (forward scatter) and associated fluorescence of 10000 ' Magnetoglobus multicellularis' aggregates per sample measured in fluorescence channel-1 (FL1-H), detecting glutaraldehyde fluorescence associated with protein content.

IMAGE

FISH with ' Magnetoglobus multicellularis'-specific probe (rhodamine; right) and DAPI stain of the same cells (left). Bar, 10 µm.

IMAGE

Fluorescence microscopy of ' Magnetoglobus multicellularis' stained with the LIVE/DEAD BacLight kit. Note that live cells stain green while, during disaggregation, individual cells are dead (red). Bar, 10 µm.

IMAGE

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error