sp. nov., a novel Gram-negative propionate-oxidizing, sulfate-reducing bacterium isolated from an estuarine sediment in Japan Free

Abstract

Two strictly anaerobic, mesophilic, sulfate-reducing bacterial strains, Pro1 and Pro16, were isolated from an estuarine sediment in the Sea of Japan of the Japanese islands and were characterized by phenotypic and phylogenetic methods. Strains Pro1 and Pro16 had almost the same physiological and chemotaxonomic characteristics. Cells of both strains were Gram-negative, motile, non-spore-forming rods. Catalase activity was not detected. The optimum NaCl concentration for growth was 3.0 % (w/v). The optimum temperature for growth was 35 °C and the optimum pH was 6.7. Both strains used formate, propionate, pyruvate, lactate, fumarate, malate, ethanol, propanol, butanol, glycerol, alanine, glucose, fructose and H as electron donors for sulfate reduction and did not use acetate, butyrate, succinate, methanol, glycine, serine, aspartate, glutamate, cellobiose or sucrose. Organic electron donors were incompletely oxidized mainly to acetate. Both strains also used thiosulfate as an electron acceptor. Without electron acceptors, both strains fermented pyruvate and lactate. The genomic DNA G+C contents of strains Pro1 and Pro16 were 48.6 and 46.0 mol%, respectively. The major respiratory quinone of both strains was menaquinone MK-5(H). Major cellular fatty acids of both strains were C, C, C 6 and C 7. Phylogenetic analysis based on 16S rRNA gene sequences placed both strains in the class . The closest recognized relative of strains Pro1 and Pro16 was with sequence similarities of 95.2 and 94.8 %, respectively. Based on phylogenetic, physiological and chemotaxonomic characteristics, strains Pro1 and Pro16 represent a novel species of the genus , for which the name is proposed. The type strain is Pro1(=JCM 14043=DSM 18378) and strain Pro16 (=JCM 14044=DSM 18379) is a reference strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64855-0
2007-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/4/849.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64855-0&mimeType=html&fmt=ahah

References

  1. Akasaka H., Izawa T., Ueki K., Ueki A. 2003a; Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. FEMS Microbiol Ecol 43:149–161 [CrossRef]
    [Google Scholar]
  2. Akasaka H., Ueki A., Hanada S., Kamagata Y., Ueki K. 2003b Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil. Int J Syst Evol Microbiol 531991–1998 [CrossRef]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Blenden D. C., Goldberg H. S. 1965; Silver impregnation stain for Leptospira and flagella. J Bacteriol 89:899–900
    [Google Scholar]
  5. Castro H. F., Williams N. H., Ogram A. 2000; Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9
    [Google Scholar]
  6. Felsenstein J. 2006 phylip (Phylogeny Inference Package), v3.66. Department of Genome Sciences University of Washington; Seattle:
    [Google Scholar]
  7. Hungate R. E. 1966 The Rumen and its Microbes New York: Academic Press;
    [Google Scholar]
  8. Jørgensen B. B. 1982; Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature 296:643–645 [CrossRef]
    [Google Scholar]
  9. Kamagata Y., Mikami E. 1991; Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41:191–196 [CrossRef]
    [Google Scholar]
  10. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  11. Kuever J., Rainey F. A., Widdel F. 2005; Class IV. Deltaproteobacteria class nov. In Bergey's Manual of Systematic Bacteriology Vol. 2, Part C, 2nd edn. pp  922–1144 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  12. Lien T., Madsen M., Steen I. H., Gjerdevik K. 1998; Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water-oil separation system. Int J Syst Bacteriol 48:469–474 [CrossRef]
    [Google Scholar]
  13. Miller G. L. 1959; Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428 [CrossRef]
    [Google Scholar]
  14. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  15. Miyagawa E., Azuma R., Suto E. 1979; Cellular fatty acid composition in Gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25:41–51 [CrossRef]
    [Google Scholar]
  16. Moore L. V. H., Bourne D. M., Moore W. E. C. 1994; Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic gram-negative bacilli. Int J Syst Bacteriol 44:338–347 [CrossRef]
    [Google Scholar]
  17. Nakamoto M., Ueki A., Ueki K. 1996; Physiological properties of a sulfate-reducing bacterium isolated from municipal sewage sludge and its possible role as a syntrophic acidogen in the ecosystem. J Gen Appl Microbiol 42:109–120 [CrossRef]
    [Google Scholar]
  18. Parkes R. J., Dowling N. J. E., White D. C., Herbert R. A., Gibson G. R. 1993; Characterization of sulfate-reducing bacterial-populations within marine and estuarine sediments with different rates of sulfate reduction. FEMS Microbiol Ecol 102:235–250 [CrossRef]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  20. Samain E., Dubourguier H. C., Albagnac G. 1984; Isolation and characterization of Desulfobulbus elongatus sp. nov. from a mesophilic industrial digester. Syst Appl Microbiol 5:391–401 [CrossRef]
    [Google Scholar]
  21. Sass A., Rütters H., Cypionka H., Sass H. 2002; Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides. Arch Microbiol 177:468–474 [CrossRef]
    [Google Scholar]
  22. Sørensen J., Christensen D., Jørgensen B. B. 1981; Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl Environ Microbiol 42:5–11
    [Google Scholar]
  23. Suzuki D., Ueki A., Amaishi A., Ueki K. 2007 Desulfopila aestuarii gen. nov., sp. nov., a novel, Gram-negative, rod-like sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 57520–526 [CrossRef]
  24. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  25. Ueki A., Suto T. 1979; Cellular fatty acid composition of sulfate-reducing bacteria. J Gen Appl Microbiol 25:185–196 [CrossRef]
    [Google Scholar]
  26. Ueki A., Minato H., Azuma R., Suto T. 1980; Enumeration and isolation of anaerobic bacteria in sewage digester fluids: enumeration of sulfate-reducers by the anaerobic roll tube method. J Gen Appl Microbiol 26:25–35 [CrossRef]
    [Google Scholar]
  27. Ueki A., Matsuda K., Ohtsuki C. 1986; Sulfate reduction in the anaerobic digestion of animal waste. J Gen Appl Microbiol 32:111–123 [CrossRef]
    [Google Scholar]
  28. Widdel F., Pfennig N. 1982; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov.. Arch Microbiol 131:360–365 [CrossRef]
    [Google Scholar]
  29. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  30. Widdel F., Kohring G. W., Mayer F. 1983; Studies of dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen.nov. and sp. nov. and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64855-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64855-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed