1887

Abstract

A novel, extremely thermoacidophilic, obligately chemolithotrophic archaeon (strain JP7) was isolated from a solfatara on Lihir Island, Papua New Guinea. Cells of this organism were non-motile, Gram-negative staining, irregular-shaped cocci, 0.5–1.5 μm in size, that grew aerobically by oxidation of sulfur, Fe or mineral sulfides. Cells grew anaerobically using Fe as a terminal electron acceptor and HS as an electron donor but did not oxidize hydrogen with elemental sulfur as electron acceptor. Strain JP7 grew optimally at 74 °C (temperature range 45–83 °C) and pH 0.8–1.4 (pH range 0.35–3.0). On the basis of 16S rRNA gene sequence similarity, strain JP7 was shown to belong to the , being most closely related to the type strains of (93.7 %) and (93.6 %). Cell-membrane lipid structure, DNA base composition and 16S rRNA gene sequence similarity data support the placement of this strain in the genus . Differences in aerobic and anaerobic metabolism, temperature and pH range for growth, and 16S rRNA gene sequence differentiate strain JP7 from recognized species of the genus , and an emendation of the description of the genus is proposed. Strain JP7 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JP7 (=DSM 18786=JCM 13667).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64846-0
2007-07-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/7/1418.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64846-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Brierley, C. L. & Brierley, J. A. ( 1973; ). A chemolithoautotrophic and thermophilic microorganism isolated from an acidic hot spring. Can J Microbiol 19, 183–188.[CrossRef]
    [Google Scholar]
  3. Brock, T. D. & Gustafson, J. ( 1976; ). Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl Environ Microbiol 32, 567–571.
    [Google Scholar]
  4. De Rosa, M., Gambacorta, A., Nicolaus, B., Chappe, B. & Albrecht, P. ( 1983; ). Isoprenoid ethers; backbone of complex lipids of the archaebacterium Sulfolobus solfataricus. Biochim Biophys Acta 753, 249–256.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  6. Franzmann, P. D., Haddad, C. M., Hawkes, R. B., Robertson, W. J. & Plumb, J. J. ( 2005; ). Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea: application of the Ratkowsky equation. Miner Eng 18, 1304–1314.[CrossRef]
    [Google Scholar]
  7. Fuchs, T., Huber, H., Burggraf, S. & Stetter, K. O. ( 1996; ). 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Syst Appl Microbiol 19, 56–60.[CrossRef]
    [Google Scholar]
  8. He, Z.-G., Zhong, H. & Li, Y. ( 2004; ). Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring. Curr Microbiol 48, 159–163.[CrossRef]
    [Google Scholar]
  9. Kletzin, A., Urich, T., Müller, F., Bandeiras, T. M. & Gomes, C. M. ( 2004; ). Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomembr 36, 77–91.[CrossRef]
    [Google Scholar]
  10. Laska, S., Lottspeich, F. & Kletzin, A. ( 2003; ). Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. Microbiology 149, 2357–2371.[CrossRef]
    [Google Scholar]
  11. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  12. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  13. Plumb, J. J., Bell, J. & Stuckey, D. C. ( 2001; ). Microbial populations associated with treatment of an industrial dye effluent using an anaerobic baffled reactor. Appl Environ Microbiol 67, 3226–3235.[CrossRef]
    [Google Scholar]
  14. Plumb, J. J., Gibbs, B., Stott, M. B., Robertson, W. J., Gibson, J. A. E., Nichols, P. D., Watling, H. R. & Franzmann, P. D. ( 2002; ). Enrichment and characterisation of thermophilic acidophiles for the bioleaching of mineral sulphides. Miner Eng 15, 787–794.[CrossRef]
    [Google Scholar]
  15. Ratkowsky, D. A., Lowry, R. K., McKeekin, T. A., Stokes, A. N. & Chandler, R. E. ( 1983; ). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154, 1222–1226.
    [Google Scholar]
  16. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  17. Segerer, A., Neuner, A. M., Kristjansson, J. K. & Stetter, K. O. ( 1986; ). Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36, 559–564.[CrossRef]
    [Google Scholar]
  18. Stetter, K. O. ( 1989; ). Order III. Sulfolobales ord. nov. In Bergey's Manual of Systematic Bacteriology, vol. 3, pp. 2250–2253. Edited by J. T. Staley, M. P. Bryant, N. Pfennig & J. G. Holt. Baltimore: Williams & Wilkins.
  19. Wilson, A. D. ( 1960; ). The micro-determination of ferrous iron in silicate minerals by a volumetric and colorimetric method. Analyst 85, 823–827.[CrossRef]
    [Google Scholar]
  20. Yoshida, N., Nakasato, M., Ohmura, N., Ando, A., Saiki, H., Ishii, M. & Igarashi, Y. ( 2006; ). Acidianus manzaensis sp. nov., a novel thermoacidophilic Archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+. Curr Microbiol 53, 406–411.[CrossRef]
    [Google Scholar]
  21. Zillig, W., Stetter, K. O., Wunderl, S., Schulz, W., Priess, H. & Scholz, I. ( 1980; ). The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Mikrobiol 125, 259–269.
    [Google Scholar]
  22. Zillig, W., Yeats, S., Holz, I., Böck, A., Rettenberger, M., Gropp, F. & Simon, G. ( 1986; ). Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidising or reducing sulfur. Syst Appl Microbiol 8, 197–203.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64846-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64846-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error