1887

Abstract

A novel, extremely thermoacidophilic, obligately chemolithotrophic archaeon (strain JP7) was isolated from a solfatara on Lihir Island, Papua New Guinea. Cells of this organism were non-motile, Gram-negative staining, irregular-shaped cocci, 0.5–1.5 μm in size, that grew aerobically by oxidation of sulfur, Fe or mineral sulfides. Cells grew anaerobically using Fe as a terminal electron acceptor and HS as an electron donor but did not oxidize hydrogen with elemental sulfur as electron acceptor. Strain JP7 grew optimally at 74 °C (temperature range 45–83 °C) and pH 0.8–1.4 (pH range 0.35–3.0). On the basis of 16S rRNA gene sequence similarity, strain JP7 was shown to belong to the , being most closely related to the type strains of (93.7 %) and (93.6 %). Cell-membrane lipid structure, DNA base composition and 16S rRNA gene sequence similarity data support the placement of this strain in the genus . Differences in aerobic and anaerobic metabolism, temperature and pH range for growth, and 16S rRNA gene sequence differentiate strain JP7 from recognized species of the genus , and an emendation of the description of the genus is proposed. Strain JP7 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JP7 (=DSM 18786=JCM 13667).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64846-0
2007-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/7/1418.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64846-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Brierley C. L., Brierley J. A. 1973; A chemolithoautotrophic and thermophilic microorganism isolated from an acidic hot spring. Can J Microbiol 19:183–188 [CrossRef]
    [Google Scholar]
  3. Brock T. D., Gustafson J. 1976; Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl Environ Microbiol 32:567–571
    [Google Scholar]
  4. De Rosa M., Gambacorta A., Nicolaus B., Chappe B., Albrecht P. 1983; Isoprenoid ethers; backbone of complex lipids of the archaebacterium Sulfolobus solfataricus . Biochim Biophys Acta 753:249–256 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Franzmann P. D., Haddad C. M., Hawkes R. B., Robertson W. J., Plumb J. J. 2005; Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea : application of the Ratkowsky equation. Miner Eng 18:1304–1314 [CrossRef]
    [Google Scholar]
  7. Fuchs T., Huber H., Burggraf S., Stetter K. O. 1996; 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Syst Appl Microbiol 19:56–60 [CrossRef]
    [Google Scholar]
  8. He Z.-G., Zhong H., Li Y. 2004; Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring. Curr Microbiol 48:159–163 [CrossRef]
    [Google Scholar]
  9. Kletzin A., Urich T., Müller F., Bandeiras T. M., Gomes C. M. 2004; Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomembr 36:77–91 [CrossRef]
    [Google Scholar]
  10. Laska S., Lottspeich F., Kletzin A. 2003; Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens . Microbiology 149:2357–2371 [CrossRef]
    [Google Scholar]
  11. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  12. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  13. Plumb J. J., Bell J., Stuckey D. C. 2001; Microbial populations associated with treatment of an industrial dye effluent using an anaerobic baffled reactor. Appl Environ Microbiol 67:3226–3235 [CrossRef]
    [Google Scholar]
  14. Plumb J. J., Gibbs B., Stott M. B., Robertson W. J., Gibson J. A. E., Nichols P. D., Watling H. R., Franzmann P. D. 2002; Enrichment and characterisation of thermophilic acidophiles for the bioleaching of mineral sulphides. Miner Eng 15:787–794 [CrossRef]
    [Google Scholar]
  15. Ratkowsky D. A., Lowry R. K., McKeekin T. A., Stokes A. N., Chandler R. E. 1983; Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Segerer A., Neuner A. M., Kristjansson J. K., Stetter K. O. 1986; Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559–564 [CrossRef]
    [Google Scholar]
  18. Stetter K. O. 1989; Order III. Sulfolobales ord. nov. In Bergey's Manual of Systematic Bacteriology vol  3 pp  2250–2253 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  19. Wilson A. D. 1960; The micro-determination of ferrous iron in silicate minerals by a volumetric and colorimetric method. Analyst 85:823–827 [CrossRef]
    [Google Scholar]
  20. Yoshida N., Nakasato M., Ohmura N., Ando A., Saiki H., Ishii M., Igarashi Y. 2006; Acidianus manzaensis sp. nov., a novel thermoacidophilic Archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+ . Curr Microbiol 53:406–411 [CrossRef]
    [Google Scholar]
  21. Zillig W., Stetter K. O., Wunderl S., Schulz W., Priess H., Scholz I. 1980; The Sulfolobus -“ Caldariella ” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Mikrobiol 125:259–269
    [Google Scholar]
  22. Zillig W., Yeats S., Holz I., Böck A., Rettenberger M., Gropp F., Simon G. 1986; Desulfurolobus ambivalens , gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidising or reducing sulfur. Syst Appl Microbiol 8:197–203 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64846-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64846-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error