1887

Abstract

Twenty-three acetic acid bacteria, isolated from traditional heap fermentations of Ghanaian cocoa beans, were subjected to a polyphasic taxonomic study. The isolates were catalase-positive, oxidase-negative, Gram-negative rods. They oxidized ethanol to acetic acid and were unable to produce 2-ketogluconic acid, 5-ketogluconic acid and 2,5-diketogluconic acid from glucose; therefore, they were tentatively identified as species. 16S rRNA gene sequencing and phylogenetic analysis confirmed their position in the genus , with and as their closest phylogenetic neighbours. (GTG)-PCR fingerprinting grouped the strains in a cluster that did not contain any type strains of members of the genus . DNA–DNA hybridization with the type strains of all recognized species revealed DNA–DNA relatedness values below the species level. The DNA G+C contents of three selected strains were 56.9–57.3 mol%. The novel strains had phenotypic characteristics that enabled them to be differentiated from phylogenetically related species, i.e. they were motile, did not produce 2-ketogluconic acid or 5-ketogluconic acid from glucose, were catalase-positive and oxidase-negative, grew on yeast extract with 30 % glucose, grew on glycerol (although weakly) but not on maltose or methanol as carbon sources, and did not grow with ammonium as sole nitrogen source and ethanol as carbon source. Based on the genotypic and phenotypic data, the isolates represent a novel species of the genus for which the name sp. nov. is proposed. The type strain is R-29337 (=430A=LMG 23848=DSM 18895).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64840-0
2007-07-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/7/1647.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64840-0&mimeType=html&fmt=ahah

References

  1. Cleenwerck, I., Vandemeulebroecke, K., Janssens, D. & Swings, J. ( 2002; ). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52, 1551–1558.[CrossRef]
    [Google Scholar]
  2. Coenye, T., Falsen, E., Vancanneyt, M., Hoste, B., Govan, J. R. W., Kersters, K. & Vandamme, P. ( 1999; ). Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol 49, 405–413.[CrossRef]
    [Google Scholar]
  3. Dellaglio, F., Cleenwerck, I., Felis, G. E., Engelbeen, K., Janssens, D. & Marzotto, M. ( 2005; ). Description of Gluconacetobacter swingsii sp. nov., and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 55, 2365–2370.[CrossRef]
    [Google Scholar]
  4. Dutta, D. & Gachhui, R. ( 2006; ). Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 56, 1899–1903.[CrossRef]
    [Google Scholar]
  5. Ezaki, T., Hashimoto, T. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridisation in microdilution wells as an alternative to membrane filter hybridisation in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  6. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  7. Franke, I. H., Fegan, M., Hayward, C., Leonard, G., Stackebrandt, E. & Sly, L. I. ( 1999; ). Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int J Syst Bacteriol 49, 1681–1693.[CrossRef]
    [Google Scholar]
  8. Franz, C. M. A. P., Vancanneyt, M., Vandemeulebroecke, K., De Wachter, M., Cleenwerck, I., Hoste, B., Schillinger, U., Holzapfel, W. H. & Swings, J. ( 2006; ). Pediococcus stilesii sp. nov., isolated from maize grains. Int J Syst Evol Microbiol 56, 329–333.[CrossRef]
    [Google Scholar]
  9. Gevers, D., Huys, G. & Swings, J. ( 2001; ). Applicability of rep-PCR fingerprinting for differentiation of Lactobacillus species. FEMS Microbiol Lett 205, 31–36.[CrossRef]
    [Google Scholar]
  10. Goris, J., Suzuki, K., De Vos, P., Nakase, T. & Kersters, K. ( 1998; ). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44, 1148–1153.[CrossRef]
    [Google Scholar]
  11. Gosselé, F., Swings, J. & De Ley, J. ( 1980; ). A rapid, simple and simultaneous detection of 2-keto, 5-keto- and 2,5-diketogluconic acids by thin-layer chromatography in culture media of acetic acid bacteria. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe C1, 178–181.
    [Google Scholar]
  12. Greenberg, D. E., Porcella, S. F., Stock, F., Wong, A., Conville, P. S., Murray, P. R., Holland, S. M. & Zelazny, A. M. ( 2006; ). Granulibacter bethesdensis gen. nov., sp. nov., a distinctive pathogenic acetic acid bacterium in the family Acetobacteraceae. Int J Syst Evol Microbiol 56, 2609–2616.[CrossRef]
    [Google Scholar]
  13. Hansen, C. E., del Olmo, M. & Burri, C. ( 1998; ). Enzyme activities in cocoa beans during fermentation. J Sci Food Agric 77, 273–281.[CrossRef]
    [Google Scholar]
  14. Jojima, Y., Mihara, Y., Suzuki, S., Yokozeki, K., Yamanaka, S. & Fudou, R. ( 2004; ). Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int J Syst Evol Microbiol 54, 2263–2267.[CrossRef]
    [Google Scholar]
  15. Kersters, K., Lisdiyanti, P., Komagata, K. & Swings, J. ( 2006; ). The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In The Prokaryotes, 3rd edn, vol. 5, pp. 163–200. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer-Verlag.
  16. Lisdiyanti, P., Kawasaki, H., Seki, T., Yamada, Y., Uchimura, T. & Komagata, K. ( 2000; ). Systematic study of the genus Acetobacter with descriptions of Acetobacter indonensiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov. J Gen Appl Microbiol 46, 147–165.[CrossRef]
    [Google Scholar]
  17. Lisdiyanti, P., Kawasaki, H., Seki, T., Yamada, Y., Uchimura, T. & Komagata, K. ( 2001; ). Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J Gen Appl Microbiol 47, 119–131.[CrossRef]
    [Google Scholar]
  18. Loganathan, P. & Nair, S. ( 2004; ). Swaminathania salitorans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porterisia coarctata Tateoka). Int J Syst Evol Microbiol 54, 1185–1190.[CrossRef]
    [Google Scholar]
  19. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  20. Saitou, N. & Nei, M. ( 1987; ). The neighbour-joining method: a new method for reconstructing phylogenetics trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  21. Schwan, R. F. & Wheals, A. E. ( 2004; ). The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr 44, 205–221.[CrossRef]
    [Google Scholar]
  22. Silva, L. R., Cleenwerck, I., Rivas, R., Swings, J., Trujillo, M. E., Willems, A. & Velázquez, E. ( 2006; ). Acetobacter oeni sp. nov., isolated from spoiled red wine. Int J Syst Evol Microbiol 56, 21–24.[CrossRef]
    [Google Scholar]
  23. Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A. D., Kampfer, P., Maiden, M. C. J., Nesme, X., Rossello-Mora, R., Swings, J. & other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef]
    [Google Scholar]
  24. Švec, P., Vancanneyt, M., Seman, M., Snauwaert, C., Lefebvre, K., Sedláček, I. & Swings, J. ( 2005; ). Evaluation of (GTG)5-PCR for identification of Enterococcus spp. FEMS Microbiol Lett 247, 59–63.[CrossRef]
    [Google Scholar]
  25. Thompson, S. S., Miller, K. B. & Lopez, A. S. ( 2001; ). Cocoa and coffee. In Food Microbiology: Fundamentals and Frontiers, 2nd edn, pp. 721–733. Edited by M. P. Doyle, L. R. Beuchat & T. J. Montville. Washington, DC: American Society for Microbiology.
  26. Urakami, T., Tamaoka, J., Suzuki, K.-I. & Komagata, K. ( 1989; ). Acidomonas gen. nov., incorporating Acetobacter methanolicus as Acidomonas methanolica comb. nov. Int J Syst Bacteriol 39, 50–55.[CrossRef]
    [Google Scholar]
  27. Van der Meulen, R., Adriany, T., Verbrugghe, K. & De Vuyst, L. ( 2006; ). Kinetic analysis of bifidobacterial metabolism reveals a minor role for succinic acid in the regeneration of NAD+ through its growth-associated production. Appl Environ Microbiol 72, 5204–5210.[CrossRef]
    [Google Scholar]
  28. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  29. Wilson, K. ( 1987; ). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Green Publishing and Wiley-Interscience.
  30. Yukphan, P., Malimas, T., Potacharoen, W., Tanasupawat, S., Tanticharoen, M. & Yamada, Y. ( 2005; ). Neoasaia chiangmaiensis gen. nov., sp. nov., a novel osmotolerant acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 51, 301–311.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64840-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64840-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1647 - 1652

A maximum-parsimony tree based on 16S rRNA gene sequences of sp. nov. and related species of the family . [ PDF] 33 KB



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error