sp. nov. and sp. nov., moderately halophilic bacteria isolated from a deep-sea methane cold seep Free

Abstract

Two Gram-positive, rod-shaped, moderately halophilic bacteria were isolated from a deep-sea carbonate rock at a methane cold seep in Kuroshima Knoll, Japan. These bacteria, strains IS-Hb4 and IS-Hb7, were spore-forming and non-motile. They were able to grow at temperatures as low as 9 °C and hydrostatic pressures up to 30 MPa. Based on high sequence similarity of their 16S rRNA genes to those of type strains of the genus , from 96.4 % (strain IS-Hb7 to NCIMB 9251) to 99.4 % (strain IS-Hb4 to D-8), the strains were shown to belong to this genus. DNA–DNA relatedness values of 49.5 % and 1.0–33.0 %, respectively, were determined between strains IS-Hb4 and IS-Hb7 and between these strains and other type strains. Both strains showed the major menaquinone MK7 and -orn–-Asp cell-wall peptidoglycan type. Straight-chain C, unsaturated C 7 alcohol and C 7 and cyclopropane C cyc fatty acids were predominant in both strains. The DNA G+C contents of IS-Hb4 and IS-Hb7 were respectively 43.3 and 42.1 mol%. Physiological and biochemical analyses combined with DNA–DNA hybridization results allowed us to place strains IS-Hb4 (=JCM 14154=DSM 18394) and IS-Hb7 (=JCM 14155=DSM 18393) in the genus as the respective type strains of the novel species sp. nov. and sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64817-0
2007-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/6/1243.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64817-0&mimeType=html&fmt=ahah

References

  1. Amoozegar M. A., Malekzadeh F., Malik K. A. 2003a; Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2. J Microbiol Methods 52:353–359 [CrossRef]
    [Google Scholar]
  2. Amoozegar M. A., Malekzadeh F., Malik K. A., Schumann P., Spröer C. 2003b; Halobacillus karajensis sp. nov., a novel moderate halophile. Int J Syst Evol Microbiol 53:1059–1063 [CrossRef]
    [Google Scholar]
  3. Brown T. 1995; Dot and slot blotting of DNA. In Short Protocols in Molecular Biology . , 3rd edn. pp. 2.33–2.35 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. Chichester: Wiley;
  4. Burja A. M., Webster N. S., Murphy P. T., Hill R. T. 1999; Microbial symbionts of Great Barrier Reef sponges. Mem Queensl Mus 44:63–75
    [Google Scholar]
  5. Claus D., Fahmy F., Rolf H., Tosunoglu N. 1983; Sporosarcina halophila sp. nov., an obligate, slightly halophilic bacterium from salt marsh soils. Syst Appl Microbiol 4:496–506 [CrossRef]
    [Google Scholar]
  6. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  7. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp  21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Felsenstein J. 2004 phylip – Phylogeny Inference Package, version 3.6. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  9. Fraga M. F., Uriol E., Diego L. B., Berdasco M., Esteller M., Canal M. J., Rodriguez R. 2002; High-performance capillary electrophoretic method for the quantification of 5-methyl 2′-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues. Electrophoresis 23:1677–1681 [CrossRef]
    [Google Scholar]
  10. Fujikura K., Aoki M., Fujiwara Y., Ichibayashi S., Imamura M., Ishibashi J., Iwase R., Kato K., Kosaka A. other authors 2003; Report of investigation of vent and methane seep ecosystems by the crewed submersible ‘Shinkai 2000’ and the ROV ‘Dolphin 3K’ on the Hatoma and the Kuroshima Knolls, the Nansei-shoto area. JAMSTEC J Deep Sea Res 22:21–30 (in Japanese with English abstract
    [Google Scholar]
  11. Garland J. L. 1996; Analytical approaches to the characterization of samples of microbial community using patterns of potential C source utilization. Soil Biol Biochem 28:213–221 [CrossRef]
    [Google Scholar]
  12. Garland J. L. 1999; Potential and limitation of BIOLOG for microbial community analysis. In Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology Edited by Bell C. R., Brylinsky M., Johnson-Green P. Halifax, Nova Scotia: Atlantic Canada Society for Microbial Ecology;
    [Google Scholar]
  13. Garland J. L., Mills A. L. 1991; Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359
    [Google Scholar]
  14. Hua N.-P., Naganuma T. 2007; Application of CE for determination of DNA base composition. Electrophoresis 28:366–372 [CrossRef]
    [Google Scholar]
  15. Inagaki F., Tsunogai U., Suzuki M., Kosaka A., Machiyama H., Takai K., Nunoura T., Nealson K. H., Hirokoshi K. 2004; Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu Arc, by analyzing pmoA , mmoX , mxaF , mcrA , and 16S rRNA genes. Appl Environ Microbiol 70:7445–7455 [CrossRef]
    [Google Scholar]
  16. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  17. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  18. Liu W. Y., Zeng J., Wang L., Dou Y. T., Yang S. S. 2005 Halobacillus dabanensis sp. nov. and Halobacillus aidingensis sp nov., isolated from salt lakes in Xinjiang, China. Int J Syst Evol Microbiol 55, 1991–1996 [CrossRef]
  19. Marino M., Hoffmann T., Schmid R., Mobitz H., Jahn D. 2000; Changes in protein synthesis during the adaptation of Bacillus subtilis to anaerobic conditions. Microbiology 146:97–105
    [Google Scholar]
  20. Marino M., Ramos H. C., Hoffmann T., Glaser P., Jahn D. 2001; Modulation of anaerobic energy metabolism of Bacillus subtilis by arfM ( ywiD ). J Bacteriol 183:6815–6821 [CrossRef]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  22. Nishijima M., Araki-Sakai M., Sano H. 1997; Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 28:113–122 [CrossRef]
    [Google Scholar]
  23. Okamoto T. 2004; Phylogenetic analyses of the euryhalophilic microorganisms isolated from extreme environments . Doctoral thesis Graduate School of Biosphere Sciences; Hiroshima University, Japan:
  24. Okamoto T., Naganuma T. 2003; Distribution of euryhaline halophilic microorganisms at non-hypersaline environments. In Abstracts of the Earth and Planetary Science Joint Meeting 26–29 May 2003 Chiba, Japan: Abstract B001-p005
    [Google Scholar]
  25. Okamoto T., Fujioka K., Naganuma T. 2001; Phylogenetic similarity of aerobic gram-negative halophilic bacteria from a deep-sea hydrothermal mound and Antarctic habitats. Polar Biosci 14:1–9
    [Google Scholar]
  26. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  27. Pinar G., Ramos C., Rolleke S., Schabereiter-Gurtner C., Vybiral D., Lubitz W., Denner E. B. 2001; Detection of indigenous Halobacillus populations in damaged ancient wall painting and building materials: molecular monitoring and cultivation. Appl Environ Microbiol 67:4891–4895 [CrossRef]
    [Google Scholar]
  28. Rivadeneyra M. A., Párraga J., Delgado R., Ramos-Cormenzana A., Delgado G. 2004; Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS Microbiol Ecol 48:39–46 [CrossRef]
    [Google Scholar]
  29. Sasser M. 2001; Identification of bacteria by gas chromatography of cellular fatty acids . Technical Note 101: Newark, DE: MIDI Inc;
    [Google Scholar]
  30. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Bacteriology pp  409–443 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Spring S., Ludwig W., Marquez M. C., Ventosa A., Schleifer K. H. 1996; Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp.nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496 [CrossRef]
    [Google Scholar]
  32. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_w windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  35. Wilson K. 1995; Preparation of genomic DNA from bacteria. In Short Protocols in Molecular Biology . , 3rd edn. pp. 2.11–2.13 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. Chichester: Wiley;
  36. Yang L., Tan R.-X., Wang Q., Huang W.-Y., Yin Y.-X. 2002; Antifungal cyclopeptides from Halobacillus litoralis YS3106 of marine origin. Tetrahedron Lett 43:6545–6548 [CrossRef]
    [Google Scholar]
  37. Ye R. W., Tao W., Bedzyk L., Young T., Chen M., Li L. 2000; Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J Bacteriol 182:4458–4465 [CrossRef]
    [Google Scholar]
  38. Yoon J. H., Kang K. H., Park Y. H. 2003; Halobacillus salinus sp. nov., isolated from a salt lake on the coast of the East Sea in Korea. Int J Syst Evol Microbiol 53:687–693 [CrossRef]
    [Google Scholar]
  39. Yoon J. H., Kang K. H., Oh T. K., Park Y. H. 2004; Halobacillus locisalis sp. nov., a halophilic bacterium isolated from a marine solar saltern of the Yellow Sea in Korea. Extremophiles 8:23–28 [CrossRef]
    [Google Scholar]
  40. Yoon J.-H., Kang S.-J., Lee C.-H., Oh H. W., Oh T.-K. 2005; Halobacillus yeomjeoni sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 55:2413–2417 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64817-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64817-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed