1887

Abstract

Two novel sulfate-reducing bacterial strains, designated E-2 and IMP-2, were isolated from geographically distinct locations. Strain E-2 was recovered from marine sediments near Sfax (Tunisia), whereas strain IMP-2 originated from oilfield production fluids in the Gulf of Mexico. Cells were Gram-negative, non-sporulated, motile, vibrio-shaped or sigmoid. They were strictly anaerobic, mesophilic and moderately halophilic. Sulfate, sulfite, thiosulfate and elemental sulfur served as electron acceptors, but not nitrate or nitrite. H (with acetate as carbon source), formate, fumarate, lactate, malate, pyruvate, succinate and fructose were used as electron donors in the presence of sulfate as terminal electron acceptor. Lactate was oxidized incompletely to acetate. Fumarate and pyruvate were fermented. Desulfoviridin and -type cytochromes were present. 16S rRNA gene sequence analysis of the two strains showed that they were phylogenetically similar (99.0 % similarity) and belonged to the genus , with and as their closest phylogenetic relatives. The G+C content of the DNA was respectively 60.4 and 62.7 mol% for strains E-2 and IMP-2. DNA–DNA hybridization experiments revealed that the novel strains had a high genomic relatedness, suggesting that they belong to the same species. We therefore propose that the two isolates be affiliated to a novel species of the genus , sp. nov. The type strain is strain E-2 (=DSM 18311 =JCM 14040).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64790-0
2007-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/9/2167.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64790-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  2. Birkeland N. K. 2005; Sulfate-reducing bacteria and archaea. In Petroleum Microbiology pp 35–54 Edited by Ollivier B., Magot M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Campbell L. L., Kasprzycki M. A., Postgate J. R. 1966; Desulfovibrio africanus sp. nov., a new dissimilatory sulfate-reducing bacterium. J Bacteriol 92:1122–1127
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  5. Castro H. F., Wiliams N. H., Ogram A. 2000; Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9
    [Google Scholar]
  6. Crolet J.-L. 2005; Microbial corrosion in the oil industry. In Petroleum Microbiology pp 143–169 Edited by Ollivier B., Magot M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Dang P. N., Dang T. C. H., Lai T. H., Stan-Lotter H. 1996; Desulfovibrio vietnamensis sp. nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2:385–392 [CrossRef]
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  9. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  10. Esnault G., Caumette P., Garcia J.-L. 1988; Characterization of Desulfovibrio giganteus sp. nov., a sulfate reducing bacterium isolated from a brackish coastal lagoon. Syst Appl Microbiol 10:147–151 [CrossRef]
    [Google Scholar]
  11. Fauque G., Ollivier B. 2004; Anaerobes: the sulfate-reducing bacteria as an example of metabolic diversity. In Microbial Diversity and Bioprospecting pp 169–176 Edited by Bull A. T. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Feio M. J., Beech I. B., Carepo M., Lopes J. M., Cheug C. W. S., Franco R., Guezennec J., Smith J. R., Mitchell J. I. other authors 1998; Isolation and characterisation of a novel sulphate-reducing bacterium of the Desulfovibrio genus. Anaerobe 4:117–130 [CrossRef]
    [Google Scholar]
  13. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  14. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  15. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  16. Jahnke K. D. 1992; basic computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  17. Le Gall J. 1963; A new species of Desulfovibrio . J Bacteriol 86:1120
    [Google Scholar]
  18. Magot M. 2005; Indigenous microbial community in oil fields. In Petroleum Microbiology pp 21–34 Edited by Ollivier B., Magot M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Magot M., Caumette P., Desperrier J. M., Matheron R., Dauga C., Grimont F., Carreau L. 1992; Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. Int J Syst Bacteriol 42:398–403 [CrossRef]
    [Google Scholar]
  20. Magot M., Basso O., Tardy-Jacquenod C., Caumette P. 2004; Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulfate-reducing bacteria isolated from deep subsurface oilfield water. Int J Syst Evol Microbiol 54:1693–1697 [CrossRef]
    [Google Scholar]
  21. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M. 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  22. Miranda-Tello E., Fardeau M.-L., Cayol J.-L., Thomas P., Ostoa P., Ramírez F., Fernández L., Garcia J.-L., Ollivier B. 2003; Desulfovibrio capillatus sp. nov., a long-chained sulfate-reducing bacterium isolated from Gulf of Mexico oil well. Anaerobe 9:97–103 [CrossRef]
    [Google Scholar]
  23. Postgate J. R. 1984 The Sulphate-Reducing Bacteria , 2nd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  24. Reichenbecher W., Schink B. 1997; Desulfovibrio inopinatus , sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone (1,2,4-trihydroxybenzene). Arch Microbiol 168:338–344 [CrossRef]
    [Google Scholar]
  25. Stackebrandt E., Stahl D. A., Devereux R. 1995; Taxonomic relationships. In Biotechnology Handbooks vol. 8, Sulfate-Reducing Bacteria pp 49–87 Edited by Barton L. L. New York: Plenum;
    [Google Scholar]
  26. Tardy-Jacquenod C., Magot M., Laigret F., Patel B. K. C., Guezennec J., Matheron R., Caumette P. 1996; Desulfovibrio gabonensis sp. nov., a new moderately halophilic, sulfate-reducing bacterium isolated from an oil pipeline. Int J Syst Bacteriol 46:710–715 [CrossRef]
    [Google Scholar]
  27. van der Maarel M. J. E. C., van Bergeijk S., van Werkhoven A. F., Laverman A. M., Meijer W. G., Stam W. T., Hansen T. A. 1996; Cleavage of dimethylsulfoniopropionate and reduction of acrylate by Desulfovibrio acrylicus sp. nov. Arch Microbiol 166:109–115 [CrossRef]
    [Google Scholar]
  28. Vance I., Thrasher D. R. 2005; Reservoir souring: mechanisms and prevention. In Petroleum Microbiology pp 123–142 Edited by Ollivier B., Magot M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  30. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64790-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64790-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error