1887

Abstract

Nine alginolytic, facultatively anaerobic, non-motile bacteria were isolated from the guts of the abalones , , and . Phylogenetic analyses based on 16S rRNA gene sequences indicated that these bacteria were closely related to G3-29 (98.6–99.3 % sequence similarity). DNA–DNA hybridization and phylogenetic analysis based on the gene demonstrated that six strains constituted one bacterial species, two strains represented a second species and one strain represented a third species. The three novel bacterial species were different from all currently known vibrios. The names sp. nov. (type strain GHG2-1=LMG 23416=NBRC 102076; DNA G+C content 45.0–48.0 mol%), sp. nov. (type strain RW14=LMG 23434=NBRC 102082; DNA G+C content 43.1–43.7 mol%) and sp. nov. (type strain RW22=LMG 23674=NBRC 102084; DNA G+C content 43.8 mol%) are proposed to encompass these new taxa. Several phenotypic features were revealed that discriminate , and from other species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64789-0
2007-05-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/5/916.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64789-0&mimeType=html&fmt=ahah

References

  1. Baumann, P., Furniss, A. L. & Lee, J. V. ( 1984; ). Genus I. Vibrio Pacini 1854, 411AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 518–538. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  2. Caron, J.-B., Scheltema, A., Schander, C. & Rudkin, D. ( 2006; ). A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale. Nature 442, 159–163.[CrossRef]
    [Google Scholar]
  3. Ezaki, T., Hashimoto, Y., Takeuchi, N., Yamamoto, H., Liu, S.-L., Miura, H., Matsui, K. & Yabuuchi, E. ( 1988; ). Simple genetic method to identify viridans group streptococci by colorimetric dot hybridization and fluorometric hybridization in microdilution wells. J Clin Microbiol 26, 1708–1713.
    [Google Scholar]
  4. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1993; ). phylip – phylogeny inference package, version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  6. Garrity, G. M. & Holt, J. G. ( 2001; ). The road map to the Manual. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 119–166. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York, Berlin & Heidelberg: Springer.
  7. Hayashi, K., Moriwaki, J., Sawabe, T., Thompson, F. L., Swings, J., Gudkovs, N., Christen, R. & Ezura, Y. ( 2003; ). Vibrio superstes sp. nov., isolated from the gut of Australian abalones Haliotis laevigata and Haliotis rubra. Int J Syst Evol Microbiol 53, 1813–1817.[CrossRef]
    [Google Scholar]
  8. Hidaka, T. & Sakai, M. ( 1968; ). Comparative observation of inorganic salt requirement of the marine and terrestrial bacteria. In Proceedings of the First US–Japan Seminar on Marine Microbiology (Bulletin of the Misaki Marine Biology Institute of Kyoto University, no. 12), pp. 125–149. Edited by H. Kadota & N. Taga. Kyoto: Misaki Marine Biology Institute.
  9. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T. & Williams, S. T. ( 1994; ). Facultatively anaerobic Gram-negative rods. Subgroup 2: family Vibrionaceae. In Bergey's Manual of Determinative Microbiology, 9th edn, pp. 190–253. Baltimore: Williams & Wilkins.
  10. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  11. Leifson, E. ( 1963; ). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184.
    [Google Scholar]
  12. Macián, M. C., Ludwig, W., Schleifer, K. H., Pujalte, M. J. & Garay, E. ( 2001; ). Vibrio agarivorans sp. nov., a novel agarolytic marine bacterium. Int J Syst Evol Microbiol 51, 2031–2036.[CrossRef]
    [Google Scholar]
  13. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  14. Oppenheimer, C. H. & ZoBell, C. E. ( 1952; ). The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J Mar Res 11, 10–18.
    [Google Scholar]
  15. Ostle, A. G. & Holt, J. G. ( 1982; ). Nile blue A as fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44, 238–241.
    [Google Scholar]
  16. Sawabe, T. ( 2006; ). The mutual partnership between Vibrio halioticoli and abalones. In The Biology of Vibrios, pp. 219–230. Edited by F. L. Thompson, B. Austin & J. Swings. Washington, DC: American Society for Microbiology.
  17. Sawabe, T., Oda, Y., Shiomi, Y. & Ezura, Y. ( 1995; ). Alginate degradation by bacteria isolated from the gut of sea urchins and abalones. Microb Ecol 30, 193–202.
    [Google Scholar]
  18. Sawabe, T., Sugimura, I., Ohtsuka, M., Nakano, K., Tajima, K., Ezura, Y. & Christen, R. ( 1998; ). Vibrio halioticoli sp. nov., a non-motile alginolytic marine bacterium isolated from the gut of abalone Haliotis discus hannai. Int J Syst Bacteriol 48, 573–580.[CrossRef]
    [Google Scholar]
  19. Sawabe, T., Thompson, L. F., Heyrman, J., Cnockaert, M., Hayashi, K., Tanaka, R., Yoshimizu, M., Hoste, B., Swings, J. & Ezura, Y. ( 2002; ). Fluorescent amplified fragment length polymorphism (FAFLP) and repetitive extragenic palindrome (rep)-PCR fingerprinting reveal host specific-genetic diversity of Vibrio halioticoli-like strains isolated from the gut of Japanese abalone. Appl Environ Microbiol 68, 4140–4144.[CrossRef]
    [Google Scholar]
  20. Sawabe, T., Setoguchi, N., Inoue, S., Tanaka, R., Ootsubo, M., Yoshimizu, M. & Ezura, Y. ( 2003; ). Acetic acid production of Vibrio halioticoli from alginate: a possible role for establishment of abalone-V. halioticoli association. Aquaculture 219, 671–679.[CrossRef]
    [Google Scholar]
  21. Sawabe, T., Hayashi, K., Moriwaki, J., Thompson, F. L., Swings, J., Potin, P., Christen, R. & Ezura, Y. ( 2004a; ). Vibrio gallicus sp. nov., isolated from the gut of the French abalone Haliotis tuberculata. Int J Syst Evol Microbiol 54, 843–846.[CrossRef]
    [Google Scholar]
  22. Sawabe, T., Hayashi, K., Moriwaki, J., Fukui, Y., Thompson, F. L., Swings, J. & Christen, R. ( 2004b; ). Vibrio neonatus sp. nov. and Vibrio ezurae sp. nov. isolated from the gut of Japanese abalones. Syst Appl Microbiol 27, 527–534.[CrossRef]
    [Google Scholar]
  23. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  24. West, M., Burdash, N. M. & Freimuth, F. ( 1977; ). Simplified silver plating stain for flagella. J Clin Microbiol 6, 414–419.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64789-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64789-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error