gen. nov., sp. nov., isolated from drinking water Free

Abstract

Two Gram-negative, rod-shaped, oxidase-positive, non-spore-forming, non-motile bacteria (strains CCUG 49009 and CCUG 49012), both isolated from drinking water, were characterized. On the basis of chemotaxonomic data [major ubiquinone, Q-8; predominant polyamines, putrescine and 2-hydroxyputrescine; major polar lipids, phosphatidylethanolamine, moderate amounts of diphosphatidylglycerol and phosphatidylglycerol and minor amounts of three aminolipids and phosphatidylserine; major fatty acids, C and summed feature 3 (C 7/C iso 2-OH)] and 16S rRNA gene sequence similarities, both strains clearly belong to the family of the . 16S rRNA gene sequence similarities with members of the most closely related genera of this group (, , , , , , and ) were less than 96.5 % for both strains. The two strains also shared a relatively low 16S rRNA gene sequence similarity (96.8 %). Although phylogenetic analysis based on 16S rRNA gene sequence similarities clearly showed that the two organisms formed a separate branch, their phenotypes (including chemotaxonomic features) were hardly distinguishable and showed high similarities to those reported for the most closely related genera. On the basis of DNA–DNA hybridization results, the two strains were shown to represent separate species (sharing only 20 % DNA–DNA relatedness), but they could not be clearly differentiated phenotypically from each other. It is evident that these organisms represent a new genus, gen. nov., with one species, sp. nov. The type strain of is strain CCUG 49009 (=CIP 109318). Strain CCUG 49012 (=CIP 108976) probably represents a second species of this genus, but is described here as a second genomovar of this species because of the lack of differentiating characters.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64785-0
2007-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/7/1510.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64785-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Busse H.-J., Kämpfer P., Lubitz W., Makristathis A. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [CrossRef]
    [Google Scholar]
  2. Auling G., Busse H.-J., Pilz F., Webb L., Kneifel H., Claus D. 1991; Rapid differentiation by polyamine analysis of Xanthomonas strains from phytopathogenic pseudomonads and other members of the class Proteobacteria interacting with plants. Int J Syst Bacteriol 41:223–228 [CrossRef]
    [Google Scholar]
  3. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  4. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  5. Ding L., Yokota A. 2004 Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [ Pseudomonas ] huttiensis , [ Pseudomonas ] lanceolata , [ Aquaspirillum ] delicatum and [ Aquaspirillum ] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. Int J Syst Evol Microbiol 54, 2223–2230 [CrossRef]
  6. Fernandes C., Rainey F. A., Nobre M. F., Pinhal I., Folhas F., da Costa M. S. 2005; Herminiimonas fonticola gen. nov. sp. nov., a betaproteobacterium isolated from a source of bottled mineral water. Syst Appl Microbiol 28:596–603 [CrossRef]
    [Google Scholar]
  7. Garrity G. M., Bell J. A., Lilburn T. 2005; Family II. Oxalobacteraceae fam. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn., vol. 2, The Proteobacteria , part Cp– 623 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. Heidelberg & New York: Springer;
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Hamana K., Takeuchi M. 1998; Polyamine profiles as chemotaxonomic markers within alpha, beta, gamma, delta, and epsilon subclasses of class Proteobacteria : distribution of 2-hydroxyputrescine and homospermidine. Microbiol Cult Coll 14:1–14
    [Google Scholar]
  10. Hauser E., Kämpfer P., Busse H.-J. 2004; Pseudomonas psychrotolerans sp. nov. Int J Syst Evol Microbiol 54:1633–1637 [CrossRef]
    [Google Scholar]
  11. Jendrossek D. 2001; Transfer of [ Pseudomonas ] lemoignei , a Gram-negative rod with restricted catabolic capacity, to Paucimonas gen. nov. with one species, Paucimonas lemoignei comb. nov. Int J Syst Evol Microbiol 51:905–908 [CrossRef]
    [Google Scholar]
  12. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  13. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  14. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J. 2003; Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97 [CrossRef]
    [Google Scholar]
  15. Kämpfer P., Busse H.-J., Falsen E. 2006a; Polaromonas aquatica sp. nov., isolated from tap water. Int J Syst Evol Microbiol 56:605–608 [CrossRef]
    [Google Scholar]
  16. Kämpfer P., Busse H.-J., Falsen E. 2006b; Herminiimonas aquatilis sp. nov., a new species from drinking water. Syst Appl Microbiol 29:287–291 [CrossRef]
    [Google Scholar]
  17. Kämpfer P., Denger K., Cook A. M., Lee S.-T., Jäckel U., Denner E. B. M., Busse H.-J. 2006c; Castellaniella gen. nov., to accommodate the phylogenetic lineage of Alcaligenes defragrans , and proposal of Castellaniella defragrans gen.nov., comb. nov. and Castellaniella denitrificans sp. nov. Int J Syst Evol Microbiol 56:815–819 [CrossRef]
    [Google Scholar]
  18. Kumar S., Tamura K., Jakobsen I.-B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  19. La Scola B., Birtles R. J., Mallet M. N., Raoult D. 1998; Massilia timonae gen. nov., sp. nov. isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 36:2847–2852
    [Google Scholar]
  20. Li W.-Y., Zhang Y.-Q., Park D.-J., Li C.-T., Xu L.-H., Kim C.-J., Jiang C.-L. 2004; Duganella violaceinigra sp. nov., a novel mesophilic bacterium isolated from forest soil. Int J Syst Evol Microbiol 54:1811–1814 [CrossRef]
    [Google Scholar]
  21. Lincoln S. P., Fermor T. R., Tindall B. J. 1999; Janthinobacterium agaricidamnosum sp. nov., a soft rot pathogen of Agaricus bisporus . Int J Syst Bacteriol 49:1577–1589 [CrossRef]
    [Google Scholar]
  22. Lindquist D., Murrill D., Burran W. P., Winans G., Janda J. M., Probert W. H. 2003; Characteristics of Massilia timonae and Massilia timonae -like isolates from human patients, with an emended description of the species. J Clin Microbiol 41:192–196 [CrossRef]
    [Google Scholar]
  23. Muller D., Simeonova D. D., Riegel P., Mangenot S., Koechler S., Lievremont D., Bertin P. N., Lett M. C. 2006; Herminiimonas arsenicoxydans sp. nov., a metalloresistant bacterium. Int J Syst Evol Microbiol 56:1765–1769 [CrossRef]
    [Google Scholar]
  24. Stolz A., Bürger S., Kuhm A., Kämpfer P., Busse H.-J. 2005; Pusillimonas noertemannii gen. nov., sp. nov., a new member of the family Alcaligenaceae that degrades substituted salicylates. Int J Syst Evol Microbiol 55:1077–1081 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  26. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  27. Xu P., Li W.-J., Tang S.-K., Zhang Y.-Q., Chen G.-Z., Chen H.-H., Xu L.-H., Jiang C.-L. 2005; Naxibacter alkalitolerans gen. nov., sp. nov. a novel member of the family ‘ Oxalobacteraceae ’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153 [CrossRef]
    [Google Scholar]
  28. Yokota A., Akagawa-Matsushita M., Hiraishi A., Katayama Y., Urakami T., Yamasato K. 1992; Distribution of quinone systems in microorganisms: Gram-negative eubacteria. Bull Jpn Fed Cult Coll 8:136–171
    [Google Scholar]
  29. Zhang Y.-Q., Li W.-J., Zhang K.-Y., Tian X.-P., Jiang Y., Xu L.-H., Jiang C.-L., Lai R. 2006 Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int J Syst Evol Microbiol 56, 459–463 [CrossRef]
  30. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64785-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64785-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed