1887

Abstract

Six strains (CB7, CB18, CB23, CB26, CB28 and CB35) were isolated from human faeces. Based on phylogenetic analysis, phenotypic characteristics, cellular fatty acid profiles and menaquinone profiles, these strains could be included within the genus and made up two clusters. 16S rRNA gene sequence analysis indicated that five strains were most closely related to , sharing about 92 % sequence similarity; the remaining strain was most closely related to , sharing about 90 % sequence similarity. All six strains were obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-negative rods. The cellular fatty acid compositions of the six strains differed significantly from those of other species. Five strains (CB7, CB18, CB23, CB26 and CB28) contained dimethyl acetals and the major menaquinones of these strains were MK-11, MK-12 and MK-13. The major menaquinones of CB35 were MK-12 and MK-13. Based on phenotypic and phylogenetic findings, two novel species, sp. nov. and sp. nov., are proposed, representing the two different strain clusters. The DNA G+C contents of strains CB7 and CB35 were 45.3 and 48.2 mol%, respectively. The type strains of and are CB7 (=JCM 13464=DSM 18205) and CB35 (=JCM 13469=DSM 18206), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64778-0
2007-05-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/5/941.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64778-0&mimeType=html&fmt=ahah

References

  1. Downes, J., Sutcliffe, I., Tanner, A. C. R. & Wade, W. G. ( 2005; ). Prevotella marshii sp. nov. and Prevotella baroniae sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 55, 1551–1555.[CrossRef]
    [Google Scholar]
  2. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. & Relman, D. A. ( 2005; ). Diversity of the human intestinal microbial flora. Science 308, 1635–1638.[CrossRef]
    [Google Scholar]
  3. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  4. Hayashi, H., Sakamoto, M. & Benno, Y. ( 2002a; ). Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46, 535–548.[CrossRef]
    [Google Scholar]
  5. Hayashi, H., Sakamoto, M. & Benno, Y. ( 2002b; ). Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiol Immunol 46, 819–831.[CrossRef]
    [Google Scholar]
  6. Hold, G. L., Pryde, S. E., Russell, V. J., Furrie, E. & Flint, H. J. ( 2002; ). Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 39, 33–39.[CrossRef]
    [Google Scholar]
  7. Holdeman, L. V., Cato, E. P. & Moore, W. E. C. ( 1977; ). Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University.
  8. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  9. Kitahara, M., Takamine, F., Imamura, T. & Benno, Y. ( 2001; ). Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7α-dehydroxylating activity. Int J Syst Evol Microbiol 51, 39–44.
    [Google Scholar]
  10. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  11. Laughon, B. E., Syed, S. A. & Loesche, W. J. ( 1982; ). API ZYM system for identification of Bacteroides spp., Capnocytophaga spp., and spirochetes of oral origin. J Clin Microbiol 15, 97–102.
    [Google Scholar]
  12. Matsuki, T., Watanabe, K., Fujimoto, J., Takada, T. & Tanaka, R. ( 2004; ). Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 70, 7220–7228.[CrossRef]
    [Google Scholar]
  13. Mayberry, W. R., Lambe, D. W., Jr & Ferguson, K. P. ( 1982; ). Identification of Bacteroides species by cellular fatty acid profiles. Int J Syst Bacteriol 32, 21–27.[CrossRef]
    [Google Scholar]
  14. Mitsuoka, T., Morishita, Y., Terada, A. & Yamamoto, S. ( 1969; ). A simple method (‘plate-in-bottle method’) for the cultivation of fastidious anaerobes. Jpn J Microbiol 13, 383–385.[CrossRef]
    [Google Scholar]
  15. Miyagawa, E., Azuma, R. & Suto, T. ( 1979; ). Cellular fatty acid composition in gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25, 41–51.[CrossRef]
    [Google Scholar]
  16. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  17. Sakamoto, M., Suzuki, M., Umeda, M., Ishikawa, I. & Benno, Y. ( 2002; ). Reclassification of Bacteroides forsythus ( Tanner et al. 1986 ) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52, 841–849.[CrossRef]
    [Google Scholar]
  18. Sakamoto, M., Suzuki, M., Huang, Y., Umeda, M., Ishikawa, I. & Benno, Y. ( 2004; ). Prevotella shahii sp. nov. and Prevotella salivae sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 54, 877–883.[CrossRef]
    [Google Scholar]
  19. Sakamoto, M., Huang, Y., Umeda, M., Ishikawa, I. & Benno, Y. ( 2005a; ). Prevotella multiformis sp. nov., isolated from human subgingival plaque. Int J Syst Evol Microbiol 55, 815–819.[CrossRef]
    [Google Scholar]
  20. Sakamoto, M., Umeda, M., Ishikawa, I. & Benno, Y. ( 2005b; ). Prevotella multisaccharivorax sp. nov., isolated from human subgingival plaque. Int J Syst Evol Microbiol 55, 1839–1843.[CrossRef]
    [Google Scholar]
  21. Sakka, K., Furuse, S. & Shimada, K. ( 1989; ). Cloning and expression in Escherichia coli of thermophilic Clostridium sp. F1 gene related to cellulose hydrolysis. Agric Biol Chem 53, 905–910.[CrossRef]
    [Google Scholar]
  22. Shah, H. N. ( 1992; ). The genus Bacteroides and related taxa. In The Prokaryotes, 2nd edn, pp. 3593–3607. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  23. Shah, H. N. & Collins, M. D. ( 1980; ). Fatty acid and isoprenoid quinone composition in the classification of Bacteroides melaninogenicus and related taxa. J Appl Bacteriol 48, 75–87.[CrossRef]
    [Google Scholar]
  24. Shah, H. N. & Collins, M. D. ( 1983; ). Genus Bacteroides. A chemotaxonomical perspective. J Appl Bacteriol 55, 403–416.[CrossRef]
    [Google Scholar]
  25. Shah, H. N., Collins, M. D., Watabe, J. & Mitsuoka, T. ( 1985; ). Bacteroides oulorum sp. nov., a nonpigmented saccharolytic species from the oral cavity. Int J Syst Bacteriol 35, 193–197.[CrossRef]
    [Google Scholar]
  26. Slots, J. ( 1981; ). Enzymatic characterization of some oral and nonoral gram-negative bacteria with the API ZYM system. J Clin Microbiol 14, 288–294.
    [Google Scholar]
  27. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  28. Suau, A., Bonnet, R., Sutren, M., Godon, J.-J., Gibson, G. R., Collins, M. D. & Doré, J. ( 1999; ). Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65, 4799–4807.
    [Google Scholar]
  29. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  30. Tanner, A. C. R., Strzempko, M. N., Belsky, C. A. & McKinley, G. A. ( 1985; ). API ZYM and API An-Ident reactions of fastidious oral gram-negative species. J Clin Microbiol 22, 333–335.
    [Google Scholar]
  31. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  32. Watabe, J., Benno, Y. & Mitsuoka, T. ( 1983; ). Taxonomic study of Bacteroides oralis and related organisms and proposal of Bacteroides veroralis sp. nov. Int J Syst Bacteriol 33, 57–64.[CrossRef]
    [Google Scholar]
  33. Wilson, K. H. & Blitchington, R. B. ( 1996; ). Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62, 2273–2278.
    [Google Scholar]
  34. Zoetendal, E. G., Akkermans, A. D. & de Vos, W. M. ( 1998; ). Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64, 3854–3859.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64778-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64778-0
Loading

Data & Media loading...

vol. , part 5, pp. 941 - 946

Results of API 20A tests.

Cellular fatty acid compositions (%) of strains of sp. nov. and sp nov. and related type strains.

Menaquinone compositions (%) of strains of sp. nov. and sp. nov. and related type strains.

API ZYM and API An-Ident test results.

[PDF file of Supplementary Tables S1-S4](43 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error