1887

Abstract

Among a large collection of Taiwanese soil isolates, a novel Gram-variable, rod-shaped, motile and endospore-forming bacterial strain, designated G-soil-2-3, was isolated from farmland soil in Wu-Feng, Taiwan. The isolate was subjected to a polyphasic study including 16S rRNA gene sequence analysis, DNA–DNA hybridization experiments, fatty acid analysis and comparative phenotypic characterization. 16S rRNA gene sequence analysis indicated that the organism belongs within the genus . It contained menaquinone MK-7 as the predominant isoprenoid quinone and anteiso-C (40.5 %), iso-C (13.1 %), iso-C (10.8 %) and anteiso-C (7.3 %) as the major fatty acids. Phylogenetically, the closest relatives of strain G-soil-2-3 were the type strains of , and , with 16S rRNA gene sequence similarity of 95.7, 95 and 95.2 %, respectively. DNA–DNA hybridization experiments showed levels of relatedness of 2.8–9.0 % of strain G-soil-2-3 with these strains. The G+C content of the DNA was 44.6 mol%. Strain G-soil-2-3 was clearly distinguishable from , and and thus represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is G-soil-2-3 (=BCRC 17411=IAM 15414=LMG 23799=DSM 18679).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64764-0
2007-06-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/6/1351.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64764-0&mimeType=html&fmt=ahah

References

  1. Ash C., Farrow A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206
    [Google Scholar]
  2. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64:253–260
    [Google Scholar]
  3. Barrow G. I., Feltham R. K. A. 1993 Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  4. Chern L.-L., Stackebrandt E., Lee S.-F., Lee F.-L., Chen J.-K., Fu H.-M. 2004; Chitinibacter tainanensis gen. nov., sp. nov. a chitin-degrading aerobe from soil in Taiwan. Int J Syst Evol Microbiol 54:1387–1391 [CrossRef]
    [Google Scholar]
  5. Collins M. D., Jones D. 1981; A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 51:129–134 [CrossRef]
    [Google Scholar]
  6. Cowan S. T., Steel K. J. 1974 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  9. Garrity G. M., Holt J. G. 2001; Taxonomic outline of the Archaea and Bacteria . In Bergey's Manual of Systematic Bacteriology . , 2nd edn. vol 1 The Archaea and the Deeply Branching and Phototrophic Bacteria pp  155–166 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  10. Hagström Å., Pinhassi J., Zweifel U. L. 2000; Biogeographical diversity among marine bacterioplankton. Aquat Microb Ecol 21:231–244 [CrossRef]
    [Google Scholar]
  11. Kämpfer P., Buczolits S., Albrecht A., Busse H.-J., Stackebrandt E. 2003; Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int J Syst Evol Microbiol 53:893–896 [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  13. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  14. Saha P., Mondal A. K., Mayilraj S., Krishnamurthi S., Bhattacharya A., Chakrabarti T. 2005; Paenibacillus assamensis sp. nov., a novel bacterium isolated from a warm spring in Assam, India. Int J Syst Evol Microbiol 55:2577–2581 [CrossRef]
    [Google Scholar]
  15. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  16. Shida O., Takagi H., Kadowaki K., Komagata K. 1996; Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46:939–946 [CrossRef]
    [Google Scholar]
  17. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997a; Transfer of Bacillus alginolyticus , Bacillus chondroitinus , Bacillus curdlanolyticus , Bacillus glucanolyticus , Bacillus kobensis , and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47:289–298 [CrossRef]
    [Google Scholar]
  18. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997b; Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov. Int J Syst Bacteriol 47:299–306 [CrossRef]
    [Google Scholar]
  19. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species identification in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  20. Tai C.-J., Kuo H.-P., Lee F.-L., Chen H.-K., Yokata A., Lo C.-C. 2006; Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 56:1771–1776 [CrossRef]
    [Google Scholar]
  21. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  23. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  25. West M., Burdash N. M., Freimuth F. 1977; Simplified silver-plating stain for flagella. J Clin Microbiol 6:414–419
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64764-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64764-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error