1887

Abstract

Two mercury-resistant strains of heterotrophic, aerobic, marine bacteria, designated AT1 and AS1, were isolated from water samples collected from the Er-Jen River estuary, Tainan, Taiwan. Cells were Gram-negative rods that were motile by means of a single polar flagellum. Buds and prosthecae were produced. The two isolates required NaCl for growth and grew optimally at about 30 °C, 2–4 % NaCl and pH 7–8. They grew aerobically and were incapable of anaerobic growth by fermenting glucose or other carbohydrates. They grew and expressed Hg-reducing activity in liquid media containing HgCl. Strain AS1 reduced nitrate to nitrite. The predominant isoprenoid quinone was Q (91.3–99.9 %). The polar lipids of strain AT1 consisted of phosphatidylethanolamine (46.6 %), phosphatidylglycerol (28.9 %) and sulfolipid (24.5 %), whereas those of AS1 comprised phosphatidylethanolamine (48.2 %) and phosphatidylglycerol (51.8 %). The two isolates contained C 7 and/or iso-C 2-OH (22.4–33.7 %), C (19.0–22.7 %) and C 7 (11.3–11.7 %) as the major fatty acids. Strains AT1 and AS1 had DNA G+C contents of 43.1 and 45.3 mol%, respectively. Phylogeny based on 16S rRNA gene sequences, together with data from morphological, physiological and chemotaxonomic characterization, indicated that the two isolates could be classified as representatives of two novel species in the genus , for which the names sp. nov. (type strain AT1=BCRC 17571=JCM 13895) and sp. nov. (type strain AS1=BCRC 17572=JCM 13896) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64762-0
2007-06-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/6/1209.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64762-0&mimeType=html&fmt=ahah

References

  1. Barkay, T., Miller, S. M. & Summers, A. O. ( 2003; ). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27, 355–384.[CrossRef]
    [Google Scholar]
  2. Bloom, N. S. & Crecelius, E. A. ( 1983; ). Determination of mercury in seawater at sub-nanogram per liter levels. Mar Chem 14, 49–59.[CrossRef]
    [Google Scholar]
  3. Bouchotroch, S., Quesada, E., del Moral, A., Llamas, I. & Béjar, V. ( 2001; ). Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51, 1625–1632.[CrossRef]
    [Google Scholar]
  4. Bowman, J. P. & McMeekin, T. A. ( 2005; ). Genus I. Alteromonas Baumann, Baumann, Mandel and Allen 1972, 418, emend. Gauthier, Gauthier and Christen 1995a, 760. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part B, pp. 444–447. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  5. Hobel, C. F. V., Marteinsson, V. T., Hreggvidsson, G. O. & Kristjansson, J. K. ( 2005; ). Investigation of the microbial ecology of intertidal hot springs by using diversity analysis of 16S rRNA and chitinase genes. Appl Environ Microbiol 71, 2771–2776.[CrossRef]
    [Google Scholar]
  6. Ivanova, E. P., Zhukova, N. V., Svetashev, V. I., Gorshkova, N. M., Kurilenko, V. V., Frolova, G. M. & Mikhailov, V. V. ( 2000; ). Evaluation of phospholipid and fatty acid compositions as chemotaxonomic markers of Alteromonas-like Proteobacteria. Curr Microbiol 41, 341–345.[CrossRef]
    [Google Scholar]
  7. Ivanova, E. P., Flavier, S. & Christen, R. ( 2004; ). Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54, 1773–1788.[CrossRef]
    [Google Scholar]
  8. Ivanova, E. P., Bowman, J. P., Lysenko, A. M., Zhukova, N. V., Gorshkova, N. M., Sergeev, A. F. & Mikhailov, V. V. ( 2005; ). Alteromonas addita sp. nov. Int J Syst Evol Microbiol 55, 1065–1068.[CrossRef]
    [Google Scholar]
  9. Jean, W. D., Shieh, W. Y. & Chiu, H.-H. ( 2006a; ). Pseudidiomarina taiwanensis gen. nov., sp. nov., a marine bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the family Idiomarinaceae. Int J Syst Evol Microbiol 56, 899–905.[CrossRef]
    [Google Scholar]
  10. Jean, W. D., Chen, J.-S., Lin, Y.-T. & Shieh, W. Y. ( 2006b; ). Bowmanella denitrificans gen. nov., sp. nov., a denitrifying bacterium isolated from seawater from An-Ping Harbour, Taiwan. Int J Syst Evol Microbiol 56, 2463–2467.[CrossRef]
    [Google Scholar]
  11. Ji, G., Salzberg, S. P. & Silver, S. ( 1989; ). Cell-free mercury volatilization activity from three marine Caulobacter strains. Appl Environ Microbiol 55, 523–525.
    [Google Scholar]
  12. Lin, Y.-T. & Shieh, W. Y. ( 2006; ). Zobellella denitrificans gen. nov., sp. nov. and Zobellella taiwanensis sp. nov., denitrifying bacteria capable of fermentative metabolism. Int J Syst Evol Microbiol 56, 1209–1215.[CrossRef]
    [Google Scholar]
  13. Martínez-Checa, F., Bejar, V., Llamas, I., del Moral, A. & Quesada, E. ( 2005; ). Alteromonas hispanica sp. nov., a polyunsaturated-fatty-acid-producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 55, 2385–2390.[CrossRef]
    [Google Scholar]
  14. Muir, D., Braune, B., DeMarch, B., Norstrom, R., Wagemann, R., Lockhart, L., Hargrave, B., Bright, D., Addison, R. & other authors ( 1999; ). Spatial and temporal trends and effects of contaminants in the Canadian Arctic marine ecosystem: a review. Sci Total Environ 230, 83–144.[CrossRef]
    [Google Scholar]
  15. Munthe, J. ( 1992; ). Aqueous oxidation of elemental mercury by ozone. Atmos Environ 26A, 1461–1468.
    [Google Scholar]
  16. Osborn, A. M., Bruce, K. D., Strike, P. & Ritchie, D. A. ( 1997; ). Distribution, diversity, and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19, 239–262.[CrossRef]
    [Google Scholar]
  17. Sasser, M. ( 1997; ). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI Inc.
  18. Shieh, W. Y. & Liu, C. M. ( 1996; ). Denitrification by a novel halophilic fermentative bacterium. Can J Microbiol 42, 507–514.[CrossRef]
    [Google Scholar]
  19. Shieh, W. Y., Chen, A. L. & Chiu, H. H. ( 2000; ). Vibrio aerogenes sp. nov., a facultatively anaerobic marine bacterium that ferments glucose with gas production. Int J Syst Evol Microbiol 50, 321–329.[CrossRef]
    [Google Scholar]
  20. Shieh, W. Y., Lin, Y.-T. & Jean, W. D. ( 2004; ). Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. Int J Syst Evol Microbiol 54, 2307–2312.[CrossRef]
    [Google Scholar]
  21. Silver, S. & Phung, L. T. ( 1996; ). Bacterial heavy metal resistance: new surprise. Annu Rev Microbiol 50, 753–789.[CrossRef]
    [Google Scholar]
  22. Tseng, C.-M., Balcom, P. H., Lamborg, C. H. & Fitzgerald, W. F. ( 2003; ). Dissolved elemental mercury investigations in Long Island Sound using on-line Au amalgamation-flow injection analysis. Environ Sci Technol 37, 1183–1188.[CrossRef]
    [Google Scholar]
  23. Van Trappen, S., Tan, T.-L., Yang, J., Mergaert, J. & Swings, J. ( 2004; ). Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol 54, 1157–1163.[CrossRef]
    [Google Scholar]
  24. Wagner-Döbler, I., von Canstein, H. F., Li, Y., Timmis, K. N. & Deckwer, W.-D. ( 2000; ). Removal of mercury from chemical wastewater by microorganisms in technical scale. Environ Sci Technol 34, 4628–4634.[CrossRef]
    [Google Scholar]
  25. Yoon, J.-H., Kim, I.-G., Kang, K. H., Oh, T.-K. & Park, Y.-H. ( 2003; ). Alteromonas marina sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 53, 1625–1630.[CrossRef]
    [Google Scholar]
  26. Yoon, J.-H., Yeo, S.-H., Oh, T.-K. & Park, Y.-H. ( 2004; ). Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54, 1197–1201.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64762-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64762-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error