1887

Abstract

A Gram-negative, rod-like, stalk-producing bacterium, designated strain EMB102, was isolated from activated sludge that performed enhanced biological phosphorus removal in a sequencing batch reactor. Cells without stalks were motile with single polar flagella, but cells that did produce stalks were non-motile and lacked polar flagella. Growth of strain EMB102 was observed at temperatures between 15 and 35 °C (optimum, 30 °C) and between pH 6.0 and 9.0 (optimum, pH 7.5–8.5). The predominant fatty acids of strain EMB102 were C , C and C. The predominant polar lipid was phosphatidylglycerol. The G+C content of the genomic DNA was 64.1 mol% and the major quinone was Q-10. Comparative 16S rRNA gene sequence analyses showed that strain EMB102 formed a distinct phyletic lineage within the genus . The levels of 16S rRNA gene sequence similarity between the type strains of species ranged from 95.8 to 97.5 %. DNA–DNA relatedness levels between the EMB102 and closely related species were below 15.0 %. On the basis of chemotaxonomic data and molecular properties, strain EMB102 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is EMB102 (=KCTC 12609=DSM 17977).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64737-0
2007-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/7/1561.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64737-0&mimeType=html&fmt=ahah

References

  1. Abraham W.-R., Strömpl C., Meyer H., Lindholst S., Moore E. R. B., Christ R., Vancanneyt M., Tindall B. J., Bennasar A. other authors 1999 Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter . Int J Syst Bacteriol 49, 1053–1073 [CrossRef]
  2. Batrakov S. G., Nikitin D. I., Sheichenko V. I., Ruzhitsky A. O. 1997; Unusual lipid composition of the gram-negative, freshwater, stalked bacterium Caulobacter bacteroides NP-105. Biochim Biophys Acta 1347127–139 [CrossRef]
    [Google Scholar]
  3. Cole J. R., Chai B., Marsh T. L., Farris R. J., Wang Q., Kulam S. A., Chandra S., McGarrell D. M., Schmidt T. M. other authors 2003; The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 2002 phylip (phylogeny inference package), version 3.6a. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  5. Fritz I., Strömpl C., Nikitin D. I., Lysenko A. M., Abraham W.-R. 2005; Brevundimonas mediterranea sp. nov., a non-stalked species from the Mediterranean Sea. Int J Syst Evol Microbiol 55:479–486 [CrossRef]
    [Google Scholar]
  6. Gerhardt P., Murray R. G. M., Wood W. A., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P. Washington DC: American Society for Microbiology;
    [Google Scholar]
  7. Gomori G. 1955; Preparation of buffers for use in enzyme studies. In Methods in Enzymology vol. 1 pp  138–146 Edited by Colowick S. P., Kaplan N. O. New York: Academic Press;
    [Google Scholar]
  8. Jeon C. O., Park J. M. 2000; Enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose as a sole carbon source. Water Res 34:3470–3480
    [Google Scholar]
  9. Jeon C. O., Lee D. S., Park J. M. 2003; Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor. Water Res 37:2195–2205 [CrossRef]
    [Google Scholar]
  10. Jeon C. O., Lim J. M., Lee J. M., Xu L. H., Jiang C. L., Kim C. J. 2005; Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 55:1891–1896 [CrossRef]
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–208
    [Google Scholar]
  13. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester, UK: Wiley;
    [Google Scholar]
  14. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  15. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  16. Leifson E., Hugh R. 1954; A new type of polar monotrichous flagellation. J Gen Microbiol 10:68–70 [CrossRef]
    [Google Scholar]
  17. Li Y., Kawamura Y., Fujiwara N., Naka T., Liu H., Huang X., Kobayashi K., Ezaki T. 2004 Sphingomonas yabuuchiae sp. nov. and Brevundimonas nasdae sp. nov., isolated from the Russian space laboratory Mir. Int J Syst Evol Microbiol 54, 819–825. [CrossRef]
  18. Lim J. M., Jeon C. O., Park D. J., Kim H. R., Yoon B. J., Kim C. J. 2005; Pontibacillus marinus sp. nov., a moderately halophilic bacterium from a solar saltern, and emended description of the genus Pontibacillus . Int J Syst Evol Microbiol 55:1027–1031 [CrossRef]
    [Google Scholar]
  19. Mino T., Arun V., Suzuki Y. T., Matsuo T. 1987; Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. In Biological Phosphate Removal from Wastewaters pp  27–38 Edited by Ramadori R. Oxford: Pergamon Press;
    [Google Scholar]
  20. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Segers P., Vancanneyt M., Pot B., Torck U., Hoste B., Dewettinck D., Falsen E., Kersters K., De Vos P. 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas gen.nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int J Syst Bacteriol 44:499–510 [CrossRef]
    [Google Scholar]
  22. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  23. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  24. Yoon J.-H., Kang S.-J., Oh H. W., Lee J.-S., Oh T.-K. 2006; Brevundimonas kwangchunensis sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 56:613–617 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64737-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64737-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error