1887

Abstract

A Gram-negative, yellow-pigmented, rod-shaped bacterial strain (Mok-17) was isolated from marine sediment sampled in Okinawa Island, Japan. Based on analysis of the almost complete sequence of its 16S rRNA gene, strain Mok-17 was found to belong to the family . Strain Mok-17 showed highest 16S rRNA gene sequence similarity (91 %) to and . In a phylogenetic tree based on the 16S rRNA gene, strain Mok-17 formed a deep branch distinct from all other organisms in the family . The major quinone was MK-6 and the major fatty acids were iso-15 : 0, iso-15 : 1, iso-17 : 0 3-OH and summed feature 3 (16 : 17 and/or iso-15 : 0 2-OH). The DNA G+C content was 37 mol%. The phylogenetic distance to the type strains of all recognized species in the family and the phenotypic properties of strain Mok-17 supported its classification as representing a novel species in a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain is Mok-17 (=NBRC 101624=CIP 109219).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64729-0
2007-05-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/5/969.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64729-0&mimeType=html&fmt=ahah

References

  1. Abell, G. C. J. & Bowman, J. P. ( 2005; ). Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol Ecol 51, 265–277.[CrossRef]
    [Google Scholar]
  2. Adachi, J. & Hasegawa, M. ( 1996; ). molphy Version 2.3-Programs for Molecular Phylogenetics Based on Maximum Likelihood. Computer Science Monograph no. 28. Tokyo: Institute of Statistical Mathematics.
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  4. Bernardet, J.-F. ( 1998; ). Cytophaga, Flavobacterium, Flexibacter and Chryseobacterium infections in cultured marine fish. Fish Pathol 33, 229–238.[CrossRef]
    [Google Scholar]
  5. Bernardet, J.-F., Nakagawa, Y. & Holmes, B. ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049–1070.[CrossRef]
    [Google Scholar]
  6. Brosius, J., Palmer, M. L., Kennedy, P. J. & Noller, H. F. ( 1978; ). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75, 4801–4805.[CrossRef]
    [Google Scholar]
  7. Brown, M. V. & Bowman, J. P. ( 2001; ). A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35, 267–275.[CrossRef]
    [Google Scholar]
  8. Cho, J.-C. & Giovannoni, S. J. ( 2004; ). Robiginitalea biformata gen. nov., sp. nov., a novel marine bacterium in the family Flavobacteriaceae with a higher G+C content. Int J Syst Evol Microbiol 54, 1101–1106.[CrossRef]
    [Google Scholar]
  9. Cottrell, M. T. & Kirchman, D. L. ( 2000; ). Natural assemblages of marine proteobacteria and members of the Cytophaga–Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66, 1692–1697.[CrossRef]
    [Google Scholar]
  10. Cowan, S. T. & Steel, K. J. ( 1993; ). Manual for the Identification of Medical Bacteria, 3rd edn. London: Cambridge University Press.
  11. Davey, K. E., Kirby, R. R., Turley, C. M., Weightman, A. J. & Fry, J. C. ( 2001; ). Depth variation of bacterial extracellular enzyme activity and population diversity in the northeastern North Atlantic Ocean. Deep-Sea Res Part II 48, 1003–1017.[CrossRef]
    [Google Scholar]
  12. Fautz, E. & Reichenbach, H. ( 1980; ). A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8, 87–91.[CrossRef]
    [Google Scholar]
  13. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  14. Glöckner, F. O., Fuchs, B. M. & Amann, R. ( 1999; ). Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65, 3721–3726.
    [Google Scholar]
  15. Khan, S. T., Nakagawa, Y. & Harayama, S. ( 2006a; ). Krokinobacter gen. nov., with three novel species, in the family Flavobacteriaceae. Int J Syst Evol Microbiol 56, 323–328.[CrossRef]
    [Google Scholar]
  16. Khan, S. T., Nakagawa, Y. & Harayama, S. ( 2006b; ). Sediminicola luteus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae. Int J Syst Evol Microbiol 56, 841–845.[CrossRef]
    [Google Scholar]
  17. Khan, S. T., Nakagawa, Y. & Harayama, S. ( 2006c; ). Sandarakinotalea sediminis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae. Int J Syst Evol Microbiol 56, 959–963.[CrossRef]
    [Google Scholar]
  18. Khan, S. T., Nakagawa, Y. & Harayama, S. ( 2007; ). Sediminibacter furfurosus gen. nov., sp. nov. and Gilvibacter sediminis gen. nov., sp. nov., novel members of the family Flavobacteriaceae. Int J Syst Evol Microbiol 57, 265–269.[CrossRef]
    [Google Scholar]
  19. Maeda, T., Murakami, M., Ohsugi, S., Furushita, M., Mitsutani, A. & Shiba, T. ( 1998; ). Perspectives of the development of 16S rDNA probe specific for algicidal and/or algal-lytic gliding bacteria. Fish Sci 64, 861–865.
    [Google Scholar]
  20. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  21. Minamisawa, K. ( 1990; ). Division of rhizobitoxine-producing and hydrogen-uptake positive strains of Bradyrhizobium japonicum by nifDKE sequence divergence. Plant Cell Physiol 31, 81–89.
    [Google Scholar]
  22. Nakagawa, Y. & Yamasato, K. ( 1993; ). Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139, 1155–1161.[CrossRef]
    [Google Scholar]
  23. Nedashkovskaya, O. I., Suzuki, M., Vysotskii, M. V. & Mikhailov, V. V. ( 2003; ). Vitellibacter vladivostokensis gen. nov., sp. nov., a new member of the phylum Cytophaga–Flavobacterium–Bacteroides. Int J Syst Evol Microbiol 53, 1281–1286.[CrossRef]
    [Google Scholar]
  24. Nedashkovskaya, O. I., Kim, S. B., Han, S. K., Rhee, M. S., Lysenko, A. M., Falsen, E., Frolova, G. M., Mikhailov, V. V. & Bae, S. K. ( 2004; ). Ulvibacter litoralis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from the green alga Ulva fenestrata. Int J Syst Evol Microbiol 54, 119–123.[CrossRef]
    [Google Scholar]
  25. Nedashkovskaya, O. I., Vancanneyt, M., Dawyndt, P., Engelbeen, K., Vandemeulebroecke, K., Cleenwerck, I., Hoste, B., Mergaert, J., Tan, T.-L. & other authors ( 2005; ). Reclassification of [Cytophaga] marinoflava Reichenbach 1989 as Leeuwenhoekiella marinoflava gen. nov., comb. nov. and description of Leeuwenhoekiella aequorea sp. nov. Int J Syst Evol Microbiol 55, 1033–1038.[CrossRef]
    [Google Scholar]
  26. Perry, L. B. ( 1973; ). Gliding motility in some non-spreading flexibacteria. J Appl Bacteriol 36, 227–232.[CrossRef]
    [Google Scholar]
  27. Pinhassi, J., Bowman, J. P., Nedashkovskaya, O. I., Lekunberri, I., Gomez-Consarnau, L. & Pedrós-Alió, C. ( 2006; ). Leeuwenhoekiella blandensis sp. nov., a genome-sequenced marine member of the family Flavobacteriaceae. Int J Syst Evol Microbiol 56, 1489–1493.[CrossRef]
    [Google Scholar]
  28. Rüger, H.-J. & Krambeck, H.-J. ( 1994; ). Evaluation of the BIOLOG substrate metabolism system for classification of marine bacteria. Syst Appl Microbiol 17, 281–288.[CrossRef]
    [Google Scholar]
  29. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  30. Swofford, D. L. ( 2000; ). paup*: Phylogenetic analysis using parsimony (* and other methods), version 4. Sunderland, MA: Sinauer Associates.
  31. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64729-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64729-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error