1887

Abstract

A non-motile, Gram-negative, boron-tolerant and alkaliphilic bacterium was isolated from soil of the Hisarcik area in the Kutahya Province of Turkey that was naturally high in boron minerals. The novel isolate, designated T-22, formed rod-shaped cells, was catalase- and oxidase-positive and tolerated up to 300 mM boron. The strain also survived on agar medium containing up to 3 % (w/v) NaCl. The pH range for growth of this strain was 6.5–10.0 (optimum pH 8.0–9.0) and the temperature range was 16–37 °C (optimum 28–30 °C). Phylogenetic analysis based on 16S rRNA gene sequences revealed a clear affiliation with the genus , with 97.4 % sequence similarity to AC-74, which was the highest similarity among cultivated bacteria. The DNA–DNA relatedness with AC-74 was 28.3 %. The major respiratory quinone system was MK-7 and the predominant cellular fatty acids were iso-C, iso-C 9, iso-C 3-OH and summed feature 3 (iso-C 2-OH and/or iso-C 7). The DNA G+C content was 42.5 mol%. Based on the phylogenetic analysis and physiological, chemotaxonomic and genetic data, we concluded that strain T-22 should be classified in the genus , and we propose the name sp. nov. for this novel species. The type strain is strain T-22 (=DSM 17298=NBRC 101277=ATCC BAA-1189).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64728-0
2007-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/5/986.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64728-0&mimeType=html&fmt=ahah

References

  1. Ahmed I., Yokota A., Fujiwara T. 2007a; A novel highly boron tolerant bacterium, Bacillus boroniphilus sp. nov., isolated from soil, that requires boron for its growth. Extremophiles 11:217–224 [CrossRef]
    [Google Scholar]
  2. Ahmed I., Yokota A., Fujiwara T. 2007b; Gracilibacillus boraciitolerans sp. nov., a highly boron-tolerant and moderately halotolerant bacterium isolated from soil. Int J Syst Evol Microbiol 57:796–802 [CrossRef]
    [Google Scholar]
  3. Bowman J. P., Nichols D. S. 2005 Novel members of the family Flavobacteriaceae from Antarctic maritime habitats, including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp.nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia , Gelidibacter and Gillisia . Int J Syst Evol Microbiol 55, 1471–1486 [CrossRef]
  4. Bowman J. P., McCammon S. A., Lewis T., Skerratt J. H., Brown J. L., Nichols D. S., McMeekin T. A. 1998 Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al . 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 1441601–1609 [CrossRef]
  5. Bowman J. P., Nichols C. M., Gibson J. A. E. 2003; Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 531343–1355 [CrossRef]
    [Google Scholar]
  6. Çöl M., Çöl C. 2003; Environmental boron contamination in waters of the Hisarcik area in the Kutahya Province of Turkey. Food Chem Toxicol 41:1417–1420 [CrossRef]
    [Google Scholar]
  7. Cowan S. T., Steel K. J. 1974 Cowan and Steel's Manual for the Identification of Medical Bacteria , 2nd edn. London: Cambridge University Press;
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 2005 phylip (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  10. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  11. Jones B. E., Grant W. D., Collins N. C., Mwatha W. E. 1994; Alkaliphiles: diversity and identification. In Bacterial Diversity and Systematics pp  195–230 Edited by Priest F. G., Ramos-Cormenzana A., Tindall B. J. New York: Plenum;
    [Google Scholar]
  12. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  13. Kirchman D. L. 2002; The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100
    [Google Scholar]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  15. Nable R. O., Bañuelos G. S., Paull J. G. 1997; Boron toxicity. Plant Soil 193:181–198 [CrossRef]
    [Google Scholar]
  16. Nedashkovskaya O. I., Vancanneyt M., Van Trappen S., Vandemeulebroecke K., Lysenko A. M., Rohde M., Falsen E., Frolova G. M., Mikhailov V. V., Swings J. 2004; Description of Algoriphagus aquimarinus sp. nov., Algoriphagus chordae sp. nov. and Algoriphagus winogradskyi sp. nov., from sea water and algae, transfer of Hongiella halophila Yi and Chun 2004 to the genus Algoriphagus as Algoriphagus halophilus comb. nov. and emended descriptions of the genera Algoriphagus Bowman et al. 2003 and Hongiella Yi and Chun 2004. Int J Syst Evol Microbiol 54:1757–1764 [CrossRef]
    [Google Scholar]
  17. Rowe R. I., Eckhert C. D. 1999; Boron is required for zebra fish embryogenesis. J Exp Biol 202:1649–1654
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  20. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271 [CrossRef]
    [Google Scholar]
  21. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  22. Tiago I., Mendes V., Pires C., Morais P. V., Veríssimo A. 2006; Chimaereicella alkaliphila gen. nov., sp. nov. a Gram-negative alkaliphilic bacterium isolated from a nonsaline alkaline groundwater. Syst Appl Microbiol 29:100–108 [CrossRef]
    [Google Scholar]
  23. Van Trappen S., Vandecandelaere I., Mergaert J., Swings J. 2004; Algoriphagus antarcticus sp. nov., a novel psychrophile from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:1969–1973 [CrossRef]
    [Google Scholar]
  24. Warington K. 1923; The effect of boric acid and borax on the broad bean and certain other plants. Ann Bot 37:629–672
    [Google Scholar]
  25. Xie C., Yokota A. 2003; Phylogenetic analysis of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [CrossRef]
    [Google Scholar]
  26. Yoon J.-H., Yeo S.-H., Oh T.-K. 2004; Hongiella marincola sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 54:1845–1848 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64728-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64728-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error