1887

Abstract

A Gram-positive, non-spore-forming, rod-shaped and non-motile bacterium, strain Gsoil 355, was isolated from soil of a ginseng field in South Korea. In phylogenetic analyses based on 16S rRNA gene sequences, strain Gsoil 355 showed the highest levels of sequence similarity with respect to B33D1 (97.4 %), DSM 14684 (94.2 %) and KV-614 (91.8 %). The strain possesses menaquinone MK-7(H) and contains C and C 9 as the predominant fatty acids. The DNA G+C content is 71.5 mol%. On the basis of genotypic and phenotypic characteristics, strain Gsoil 355 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Gsoil 355 (=KCTC 12628=LMG 23485).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64715-0
2007-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/7/1453.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64715-0&mimeType=html&fmt=ahah

References

  1. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  2. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Furlong M. A., Singleton D. R., Coleman D. C., Whitman W. B. 2002; Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus . Appl Environ Microbiol 68:1265–1279 [CrossRef]
    [Google Scholar]
  6. Kim M. K., Im W.-T., Ohta H., Lee M., Lee S.-T. 2005; Sphingopyxis granuli sp. nov., a β -glucosidase-producing bacterium in the family Sphingomonadaceae in α -4 subclass of the Proteobacteria . J Microbiol 43:152–157
    [Google Scholar]
  7. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  8. Kumar S., Tamura K., Jakobsen I.-B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  9. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  10. Monciardini P., Cavaletti L., Schumann P., Rohde M., Donadio S. 2003; Conexibacter woesei gen nov., sp. nov a novel representative of a deep evolutionary line of descent within the class Actinobacteria . Int J Syst Evol Microbiol 53569–576 [CrossRef]
    [Google Scholar]
  11. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  12. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  13. Shin Y. K., Lee J.-S., Chun C. O., Kim H.-J., Park Y.-H. 1996; Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T . J Microbiol Biotechnol 6:68–69
    [Google Scholar]
  14. Singleton D. R., Furlong M. A., Peacock A. D., White D. C., Coleman D. C., Whitman W. B. 2003; Solirubrobacter pauli gen. nov., sp. nov. a mesophilic bacterium within the Rubrobacteridae related to common soil clones. Int J Syst Evol Microbiol 53:485–490 [CrossRef]
    [Google Scholar]
  15. Stackebrandt E. 2004; Will we ever understand? The undescribable diversity of the prokaryotes. Acta Microbiol Immunol Hung 51:449–462 [CrossRef]
    [Google Scholar]
  16. Stackebrandt E. 2005; Solirubrobacteraceae fam. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSEM, List no. 102 Int J Syst Evol Microbiol 55:547–549 [CrossRef]
    [Google Scholar]
  17. Takahashi Y., Matsumoto A., Morisaki K., Ōmura S. 2006; Patulibacter minatonensis gen. nov., sp. nov., a novel actinobacterium isolated using an agar medium supplemented with superoxide dismutase, and proposal of Patulibacteraceae fam. nov. Int J Syst Evol Microbiol 56:401–406 [CrossRef]
    [Google Scholar]
  18. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  19. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  20. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  21. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64715-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64715-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error