gen. nov., sp. nov., an anaerobic bacterium isolated from clinical specimens Free

Abstract

Three Gram-positive, anaerobic, non-spore-forming, rod-shaped bacteria with pointed ends were isolated from clinical specimens. The organisms were weakly saccharolytic and produced indole, acetate, butyrate and lactate as major metabolic end products. 16S rRNA gene sequence analysis indicated that the isolates had no known close relatives among recognized bacteria but that they exhibited a phylogenetic association with rRNA cluster XIVa [as defined by Collins, M. D. (1994) . , 812–826]. The closest recognized relatives were the type strains of , and (16S rRNA gene sequence similarity values of 90.2–91.4 %). These results suggest that these three clinical isolates represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is AIP 220.04 (=CIP 109174=CCUG 52648).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64705-0
2007-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/4/725.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64705-0&mimeType=html&fmt=ahah

References

  1. Barcenilla A., Pryde S. E., Martin J. C., Duncan S. H., Stewart C. S., Henderson C., Flint H. J. 2000; Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66:1654–1661 [CrossRef]
    [Google Scholar]
  2. Bryant M. P. 1986a; Genus XIII. Lachnospira Bryant and Small 1956, 24. In Bergey's Manual of Systematic Bacteriology vol. 2 pp  1375–1376 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  3. Bryant M. P. 1986b; Genus IV. Butyrivibrio Bryant and Small 1956, 18, emend. Moore, Johnson and Holdeman 1976, 241AL . In Bergey's Manual of Systematic Bacteriology vol. 2 pp  1376–1379 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Carlier J.-P. 1985; Gas chromatography of fermentation products: its application in diagnosis of anaerobic bacteria. Bull Inst Pasteur 83:57–69
    [Google Scholar]
  5. Carlier J.-P., K'ouas G., Bonne I., Lozniewski A., Mory F. 2004; Oribacterium sinus gen. nov., sp. nov., within the family ‘ Lachnospiraceae ’ (phylum Firmicutes ). Int J Syst Evol Microbiol 54:1611–1615 [CrossRef]
    [Google Scholar]
  6. Cato E. P., George W. L., Finegold S. M. 1986; Genus Clostridium Prazmowski 1880, 23. In Bergey's Manual of Systematic Bacteriology vol. 2 pp  1141–1200 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  7. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. 1994; The phylogeny of the genus Clostridium : proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [CrossRef]
    [Google Scholar]
  8. Cornick N. A., Jensen N. S., Stahl D. A., Hartman P. A., Allison M. J. 1994; Lachnospira pectinoschiza sp. nov., an anaerobic pectinophile from the pig intestine. Int J Syst Bacteriol 44:87–93 [CrossRef]
    [Google Scholar]
  9. Engelkirk P. G., Duben-Engelkirk J., Dowell V. R. 1992 Principles and Practice of Clinical Anaerobic Bacteriology Belmont, CA: Star Publishing;
    [Google Scholar]
  10. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  11. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe Laboratory Manual , 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  12. Jukes T. H., Cantor R. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Langendijk P. S., Schut F., Jansen G. J., Raangs G. C., Kamphuis G. R., Wilkinson M. H., Welling G. W. 1995; Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61:3069–3075
    [Google Scholar]
  14. Mohan R., Namsolleck P., Lawson P. A., Osterhoff M., Collins M. D., Alpert C.-A., Blaut M. 2006; Clostridium asparagiforme sp. nov., isolated from a human faecal sample. Syst Appl Microbiol 29:292–299 [CrossRef]
    [Google Scholar]
  15. Munson M. A., Pitt-Ford T., Chong B., Weightman A., Wade W. G. 2002; Molecular and cultural analysis of the microflora associated with endodontic infections. J Dent Res 81:761–766 [CrossRef]
    [Google Scholar]
  16. Song Y., Liu C., Molitoris D. R., Tomzynski T. J., Lawson P. A., Collins M. D., Finegold S. M. 2003; Clostridium bolteae sp. nov., isolated from human sources. Syst Appl Microbiol 26:84–89 [CrossRef]
    [Google Scholar]
  17. Suau A., Bonnet R., Sutren M., Godon J.-J., Gibson G. R., Collins M. D., Doré J. 1999; Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807
    [Google Scholar]
  18. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  19. Veys A., Callewaert W., Waelkens E., Van den Abbeele K. 1989; Application of gas-liquid chromatography to the routine identification of nonfermenting Gram-negative bacteria in clinical specimens. J Clin Microbiol 27:1538–1542
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64705-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64705-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed