sp. nov., a novel spirochaete from the hindgut of the termite Free

Abstract

A novel spirochaete, sp. strain SPIT5, was isolated from hindgut contents of the drywood termite (Snyder). The cells of strain SPIT5 were motile, helical in shape, 0.4–0.5 μm in diameter and generally 12–20 μm long. The strain is obligately anaerobic and ferments different mono-, di- and oligosaccharides by forming ethanol as the main liquid fermentation end product. Furthermore, strain SPIT5 was able to grow anaerobically with yeast extract as sole carbon and energy source. Fastest growth was obtained at 30 °C, the temperature at which the termites were also grown. The optimum pH for growth was 7.2, with a range of pH 6.5–8.0. The cells possessed various enzyme activities that are involved in the degradation of lignocellulose in the termite hindgut, such as --glucosidase, --arabinosidase and --xylosidase. The G+C content of the DNA was 47.7 mol%. Based on 16S rRNA gene sequence analysis, strain SPIT5 was shown to belong to the so-called ‘termite cluster I’ of the genus . The closest relative of strain SPIT5 was ZAS-2, with 92.3 % sequence similarity. On the basis of its phenotypic and genotypic properties, strain SPIT5 can be distinguished from other described species of the genus . Therefore, strain SPIT5 represents a novel species of , for which the name sp. nov. is proposed. The type strain is strain SPIT5 (=DSM 18056 =JCM 13955).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64699-0
2008-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/5/1079.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64699-0&mimeType=html&fmt=ahah

References

  1. Berchtold, M. & König, H.(1996). Phylogenetic analysis and in situ identification of uncultivated spirochetes from the hindgut of the termite Mastotermes darwiniensis. Syst Appl Microbiol 19, 66–73.[CrossRef] [Google Scholar]
  2. Berchtold, M., Ludwig, W. & König, H.(1994). 16S rDNA sequence and phylogenetic position of an uncultivated spirochete from the hindgut of the termite Mastotermes darwiniensis Froggatt. FEMS Microbiol Lett 123, 269–274.[CrossRef] [Google Scholar]
  3. Breznak, J. A.(1984). Hindgut spirochetes of termites and Cryptocercus puntulatus. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 67–70. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  4. Breznak, J. A. & Brune, A.(1994). Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39, 453–487.[CrossRef] [Google Scholar]
  5. Cleveland, L. R. & Grimstone, A. V.(1964). The fine structure of the flagellate Mixotricha paradoxa and its associated micro-organisms. Proc R Soc Lond B Biol Sci 159, 668–686.[CrossRef] [Google Scholar]
  6. Dröge, S., Fröhlich, J., Radek, R. & König, H.(2006).Spirochaeta coccoides sp. nov., a novel coccoid spirochete from the hindgut of the termite Neotermes castaneus. Appl Environ Microbiol 72, 392–397.[CrossRef] [Google Scholar]
  7. Eutick, M. L., Veivers, P., O'Brian, R. W. & Slaytor, M.(1978). Dependence of the higher termite Nasutitermes exitiosus and the lower termite Coptotermes lacteus on their hindgut flora. J Insect Physiol 24, 363–368.[CrossRef] [Google Scholar]
  8. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  9. Felsenstein, J.(1993).phylip (phylogeny inference package) version 3.5. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  10. Graber, J. R. & Breznak, J. A.(2004). Physiology and nutrition of Treponema primitia, an H2/CO2-acetogenic spirochete from termite hindguts. Appl Environ Microbiol 70, 1307–1314.[CrossRef] [Google Scholar]
  11. Graber, J. R., Leadbetter, J. R. & Breznak, J. A.(2004). Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol 70, 1315–1320.[CrossRef] [Google Scholar]
  12. Johnson, J. L.(1991). Isolation and purification of nucleic acids. In Nucleic Acid Techniques in Bacterial Systematics, pp. 1–18. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  13. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  14. König, H. & Varma, A.(2005).Intestinal Microorganisms of Termites and Other Invertebrates. Heidelberg: Springer.
  15. König, H., Fröhlich, J., Berchtold, M. & Wenzel, M.(2002). Diversity and microhabitats of the hindgut flora of termites. Recent Res Dev Microbiol 6, 125–156. [Google Scholar]
  16. Leadbetter, J. R., Schmidt, T. M., Graber, J. R. & Breznak, J. A.(1999). Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283, 686–689.[CrossRef] [Google Scholar]
  17. Lilburn, T. G., Kim, K. S., Ostrom, N. E., Byzek, K. R., Leadbetter, J. R. & Breznak, J. A.(2001). Nitrogen fixation by symbiotic and free-living spirochetes. Science 292, 2495–2498.[CrossRef] [Google Scholar]
  18. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  19. Mesbah, M., Premachandran, U. & Whitman, B. W.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  20. Noda, S., Ohkuma, M., Yamada, A., Hongoh, Y. & Kudo, T.(2003). Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Appl Environ Microbiol 69, 625–633.[CrossRef] [Google Scholar]
  21. Odelson, D. A. & Breznak, J. A.(1983). Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45, 1602–1613. [Google Scholar]
  22. Ohkuma, M., Iida, T. & Kudo, T.(1999). Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiol Lett 181, 123–129.[CrossRef] [Google Scholar]
  23. Paster, B. J. & Canale-Parola, E.(1985).Treponema saccharophilum sp. nov., a large pectinolytic spirochete from the bovine rumen. Appl Environ Microbiol 50, 212–219. [Google Scholar]
  24. Paster, B. J., Dewhirst, F. E., Cooke, S. M., Fussing, V., Poulsen, L. K. & Breznak, J. A.(1996). Phylogeny of not-yet-cultured spirochetes from termite guts. Appl Environ Microbiol 62, 347–352. [Google Scholar]
  25. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  26. Smibert, R. M.(1984). Genus III. Treponema Schaudinn 1905, 1728AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 49–57. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  27. Stanton, T. B. & Canale-Parola, E.(1980).Treponema bryantii sp. nov., a rumen spirochete that interacts with cellulolytic bacteria. Arch Microbiol 127, 145–156.[CrossRef] [Google Scholar]
  28. Tschech, A. & Pfennig, N.(1984). Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137, 163–167.[CrossRef] [Google Scholar]
  29. Varma, A., Kolli, B. K., Paul, J., Saxena, S. & König, H.(1994). Lignocellulose degradation by microorganisms from termite hills and termite guts: a survey on the present state of art. FEMS Microbiol Rev 15, 9–28.[CrossRef] [Google Scholar]
  30. Wenzel, M., Radek, R., Brugerolle, G. & König, H.(2003). Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Eur J Protistol 39, 11–23.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64699-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64699-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed