1887

Abstract

Strains C23 and HBSQ001 were isolated from solar salterns and are novel square-shaped, aerobic, extremely halophilic members of the domain and family . Cells stained Gram-negative and grew optimally in media containing 18 % salts at around neutral pH. Mg is not required. The DNA G+C content of both isolates was 46.9 mol% and DNA–DNA cross-hybridization showed a relatedness of 80 %. Their 16S rRNA gene sequences showed only 2 nucleotide differences (99.9 % identity) and phylogenetic tree reconstructions with other recognized members of the indicated that they formed a distinct clade, with the closest relative being PR 3 (91.2 % sequence identity). The major polar glycolipid of both isolates was the sulfated diglycosyl diether lipid S-DGD-1. Electron cryomicrosopy of whole cells revealed similar internal structures, such as gas vesicles and polyhydroxyalkanoate granules, but the cell wall of isolate HBSQ001 displayed a more complex S-layer compared with that of isolate C23. The phenotypic characterization and phylogenetic data support the placement of isolates C23 and HBSQ001 in a novel species in a new genus within the , for which we propose the name gen. nov., sp. nov. The type strain of is C23 (=JCM 12705=DSM 16854).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64690-0
2007-02-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/387.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64690-0&mimeType=html&fmt=ahah

References

  1. Antón, J., Llobet-Brossa, E., Rodríguez-Valera, F. & Amann, R. ( 1999; ). Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1, 517–523.[CrossRef]
    [Google Scholar]
  2. Antón, J., Rossello-Mora, R., Rodríguez-Valera, F. & Amann, R. ( 2000; ). Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66, 3052–3057.[CrossRef]
    [Google Scholar]
  3. Antón, J., Oren, A., Benlloch, S., Rodríguez-Valera, F., Amann, R. & Rosselló-Mora, R. ( 2002; ). Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52, 485–491.
    [Google Scholar]
  4. Benlloch, S., Martínez-Murcia, A. J. & Rodríguez-Valera, F. ( 1995; ). Sequencing of bacterial and archaeal 16S rRNA genes directly amplified from a hypersaline environment. Syst Appl Microbiol 18, 574–581.[CrossRef]
    [Google Scholar]
  5. Benlloch, S., Acinas, S. G., Antón, J., López-López, A., Luz, S. P. & Rodríguez-Valera, F. ( 2001; ). Archaeal biodiversity in crystallizer ponds from a solar saltern: culture versus PCR. Microb Ecol 41, 12–19.
    [Google Scholar]
  6. Bolhuis, H., te Poele, E. M. & Rodriguez-Valera, F. ( 2004; ). Isolation and cultivation of Walsby's square archaeon. Environ Microbiol 6, 1287–1291.[CrossRef]
    [Google Scholar]
  7. Bolhuis, H., Palm, P., Wende, A., Falb, M., Rampp, M., Rodriguez-Valera, F., Pfeiffer, F. & Oesterhelt, D. ( 2006; ). The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7, 169.[CrossRef]
    [Google Scholar]
  8. Burns, D. G., Camakaris, H. M., Janssen, P. H. & Dyall-Smith, M. L. ( 2004a; ). Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70, 5258–5265.[CrossRef]
    [Google Scholar]
  9. Burns, D. G., Camakaris, H. M., Janssen, P. H. & Dyall-Smith, M. L. ( 2004b; ). Cultivation of Walsby's square haloarchaeon. FEMS Microbiol Lett 238, 469–473.
    [Google Scholar]
  10. Dyall-Smith, M. L. ( 2006; ). The Halohandbook: Protocols for Halobacterial Genetics. http://www.microbiol.unimelb.edu.au/people/dyallsmith/HaloHandbook
  11. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  12. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  13. Gutierrez, M. C., Kamekura, M., Holmes, M. L., Dyall-Smith, M. L. & Ventosa, A. ( 2002; ). Taxonomic characterization of Haloferax sp. (“H. alicantei”) strain Aa 2.2: description of Haloferax lucentensis sp. nov. Extremophiles 6, 479–483.[CrossRef]
    [Google Scholar]
  14. Janssen, P. H., Schuhmann, A., Morchel, E. & Rainey, F. A. ( 1997; ). Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl Environ Microbiol 63, 1382–1388.
    [Google Scholar]
  15. Kamekura, M. ( 1993; ). Lipids of extreme halophiles. In The Biology of Halophilic Bacteria, pp. 135–161. Edited by R. H. Vreeland & L. I. Hochstein. Boca Raton, FL: CRC Press.
  16. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  17. Maturrano, L., Santos, F., Rosselló-Mora, R. & Antón, J. ( 2006; ). Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72, 3887–3895.[CrossRef]
    [Google Scholar]
  18. McGenity, T. J., Gemmell, R. T., Grant, W. D. & Stan-Lotter, H. ( 2000; ). Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2, 243–250.[CrossRef]
    [Google Scholar]
  19. McIntosh, R., Nicastro, D. & Mastronarde, D. ( 2005; ). New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol 15, 43–51.[CrossRef]
    [Google Scholar]
  20. Nuttall, S. D. & Dyall-Smith, M. L. ( 1993; ). HF1 and HF2: novel bacteriophages of halophilic archaea. Virology 197, 678–684.[CrossRef]
    [Google Scholar]
  21. Oren, A. ( 2002; ). Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39, 1–7.[CrossRef]
    [Google Scholar]
  22. Oren, A. & Ventosa, A. ( 2000; ). International Committee on Systematic Bacteriology Subcommittee on the taxonomy of Halobacteriaceae. Minutes of the meetings, 16 August 1999, Sydney, Australia. Int J Syst Evol Microbiol 50, 1405–1407.[CrossRef]
    [Google Scholar]
  23. Oren, A., Duker, S. & Ritter, S. ( 1996; ). The polar lipid composition of Walsby's square bacterium. FEMS Microbiol Lett 138, 135–140.[CrossRef]
    [Google Scholar]
  24. Oren, A., Ventosa, A. & Grant, W. D. ( 1997; ). Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47, 233–238.[CrossRef]
    [Google Scholar]
  25. Parkes, K. & Walsby, A. E. ( 1981; ). Ultrastructure of a gas-vacuolate square bacterium. J Gen Microbiol 126, 503–506.
    [Google Scholar]
  26. Porter, K., Kukkaro, P., Bamford, J. K., Bath, C., Kivelä, H. M., Dyall-Smith, M. L. & Bamford, D. H. ( 2005; ). SH1: a novel, spherical halovirus isolated from an Australian hypersaline lake. Virology 335, 22–33.[CrossRef]
    [Google Scholar]
  27. Stoeckenius, W. ( 1981; ). Walsby's square bacterium: fine structure of an orthogonal procaryote. J Bacteriol 148, 352–360.
    [Google Scholar]
  28. Tamaoka, J. ( 1994; ). Determination of DNA base composition. In Chemical Methods in Prokaryotic Systematics, pp. 463–470. Edited by M. Goodfellow & A. G. O'Donnell. Chichester: Wiley.
  29. Torreblanca, M., Rodriguez-Valera, F., Juez, G., Ventosa, A., Kamekura, M. & Kates, M. ( 1986; ). Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8, 89–99.[CrossRef]
    [Google Scholar]
  30. Walsby, A. E. ( 1980; ). A square bacterium. Nature 283, 69–71.[CrossRef]
    [Google Scholar]
  31. Widdel, F., Kohring, G.-W. & Mayer, F. ( 1983; ). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134, 286–294.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64690-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64690-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error