1887

Abstract

Strains L10, L108 and CIP I-2052 were originally obtained from methyl -butyl ether (MTBE)-contaminated groundwater and from a wastewater treatment plant, respectively. All share the ability to grow on -butanol, an intermediate of MTBE degradation. Cells are strictly aerobic, motile by a polar flagellum and exhibit strong pili formation. Poly -hydroxybutyrate (PHB) granules are formed. The DNA G+C content is 69–70.5 mol% and the main ubiquinone is Q-8. The major cellular fatty acids are 16 : 1 -9 and 16 : 0 and the only hydroxy fatty acid is 10 : 0 3-OH. The major phospholipids are phosphatidylethanolamine (PE) 16 : 1/16 : 1 and phosphatidylglycerol 16 : 0/16 : 1. A significant amount of PE 17 : 0/16 : 1 is present. The 16S rRNA gene sequences of these strains are almost identical and form a separate line of descent in the branch of the with 97 % similarity to 16S rRNA genes of the type strains of , and . However, physiological properties, DNA–DNA relatedness values and the phospholipid and cellular fatty acid profiles distinguish the novel isolates from the three closely related genera. Therefore, it is concluded that strains L10, L108 and CIP I-2052 represent a new genus and novel species for which the name gen. nov., sp. nov., is proposed. The type strain is strain L10 (=DSM 18512=CIP 109243).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64663-0
2007-06-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/6/1295.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64663-0&mimeType=html&fmt=ahah

References

  1. Amakata D., Matsuo Y., Shimono K., Park J. K., Yun C. S., Matsuda H., Yokota A., Kawamukai M. 2005 Mitsuaria chitosanitabida gen. nov., sp. nov., an aerobic, chitosanase-producing member of the ‘ Betaproteobacteria ’ Int J Syst Evol Microbiol 55, 1927–1932 [CrossRef]
  2. Auling G., Probst A., Kroppenstedt R. M. 1986; Chemo- and molecular taxonomy of d(-)-tartrate-utilizing pseudomonads. Syst Appl Microbiol 8:114–120 [CrossRef]
    [Google Scholar]
  3. Blümel S., Busse H. J., Stolz A., Kämpfer P. 2001 Xenophilus azovorans gen. nov., sp. nov., a soil bacterium that is able to degrade azo dyes of the Orange II type. Int J Syst Evol Microbiol 511831–1837 [CrossRef]
  4. Breitenstein A., Wiegel J., Haertig C., Weiss N., Andreesen J. R., Lechner U. 2002; Reclassification of Clostridium hydroxybenzoicum as Sedimentibacter hydroxybenzoicus gen.nov., comb. nov., and description of Sedimentibacter saalensis sp. nov. Int J Syst Evol Microbiol 52:801–807 [CrossRef]
    [Google Scholar]
  5. Breuer U., Ackermann J.-U., Babel W. 1995; Accumulation of poly (3-hydroxybutyric acid) and overproduction of exopolysaccharides in a mutant of a methylotrophic bacterium. Can J Microbiol 41:55–59 [CrossRef]
    [Google Scholar]
  6. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol 148:107–127 [CrossRef]
    [Google Scholar]
  7. Curtis P. D., Geyer R., White D. C., Shimkets L. J. 2006; Novel lipids in Myxococcus xanthus and their role in chemotaxis. Environ Microbiol 8:1935–1949 [CrossRef]
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  9. Fayolle F., Vandecasteele J.-P., Monot F. 2001; Microbial degradation and fate in the environment of methyl tert -butyl ether and related fuel oxygenates. Appl Microbiol Biotechnol 56:339–349 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  11. François A., Mathis H., Godefroy D., Piveteau P., Fayolle F., Monot F. 2002; Biodegradation of methyl tert -butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012. Appl Environ Microbiol 68:2754–2762 [CrossRef]
    [Google Scholar]
  12. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Härtig C., Loffhagen N., Harms H. 2005; Formation of trans fatty acids is not involved in growth-linked membrane adaptation of Pseudomonas putida . Appl Environ Microbiol 71:1915–1922 [CrossRef]
    [Google Scholar]
  14. Hatzinger P. B., McClay K., Vainberg S., Tugusheva M., Condee C. W., Steffan R. J. 2001; Biodegradation of methyl tert -butyl ether by a pure bacterial culture. Appl Environ Microbiol 67:5601–5607 [CrossRef]
    [Google Scholar]
  15. Hause G., Hahn H. 1998; Cytological characterization of multicellular structures in embryogenic microspore cultures of Brassica napus . L Bot Acta 111:204–211 [CrossRef]
    [Google Scholar]
  16. Hiraishi A., Hoshino Y., Satoh T. 1991; Rhodoferax fermentans gen nov., sp. nov a phototrophic purple nonsulfur bacterium previously referred to as the “ Rhodocyclus gelatinosus -like” group. Arch Microbiol 155330–336
    [Google Scholar]
  17. Imhoff J. F., Trüper H. G. 1989; Genus Rhodocyclus Pfennig 1978, 285AL . In Bergey's Manual of Systematic Bacteriology Vol. 3 pp  1678–1682 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  18. Jeon C. O., Park W., Ghiorse W. C., Madsen E. L. 2004; Polaromonas naphthalenivorans sp. nov. a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 54:93–97 [CrossRef]
    [Google Scholar]
  19. Lechner U., Baumbach R., Becker D., Kitunen V., Auling G., Salkinoja-Salonen M. 1995; Degradation of 4-chloro-2-methylphenol by an activated sludge isolate and its taxonomic description. Biodegradation 6:83–92 [CrossRef]
    [Google Scholar]
  20. Lopes Ferreira N., Malandain C., Fayolle-Guichard F. 2006a; Enzymes and genes involved in the aerobic biodegradation of methyl tert -butyl ether (MTBE. Appl Microbiol Biotechnol 72:252–262 [CrossRef]
    [Google Scholar]
  21. Lopes Ferreira N., Maciel H., Mathis H., Monot F., Fayolle-Guichard F., Greer C. W. 2006b; Isolation and characterization of a new Mycobacterium austroafricanum strain, IFP 2015, growing on MTBE. Appl Microbiol Biotechnol 70:358–365 [CrossRef]
    [Google Scholar]
  22. Lytle C. A., Gan Y.-D., White D. C. 2000; Electrospray ionization/mass spectrometry compatible reversed-phase separation of phospholipids: piperidine as a post column modifier for negative ion detection. J Microbiol Methods 41:227–234 [CrossRef]
    [Google Scholar]
  23. Malmqvist A., Welander T., Moore E., Ternström A., Molin G., Stenström I.-M. 1994; Ideonella dechloratans gen. nov., sp. nov. a new bacterium capable of growing anaerobically with chlorate as an electron acceptor. Syst Appl Microbiol 17:58–64 [CrossRef]
    [Google Scholar]
  24. Manaia C. M., Nunes O. C., Nogales B. 2003; Caenibacterium thermophilum gen. nov., sp. nov. isolated from a thermophilic aerobic digester of municipal sludge. Int J Syst Evol Microbiol 53:1375–1382 [CrossRef]
    [Google Scholar]
  25. Müller S., Bley T., Babel W. 1999; Adaptive responses of Ralstonia eutropha to feast and famine conditions analysed by flow cytometry. J Biotechnol 75:81–97 [CrossRef]
    [Google Scholar]
  26. Nakatsu C. H., Hristova K., Hanada S., Meng X.-Y., Hanson J. R., Scow K. M., Kamagata Y. 2006; Methylibium petroleiphilum gen. nov., sp. nov. a novel methyl tert -butyl ether-degrading methylotroph of the Betaproteobacteria . Int J Syst Evol Microbiol 56:983–989 [CrossRef]
    [Google Scholar]
  27. Piveteau P., Fayolle F., Vandecasteele J.-P., Monot F. 2001; Biodegradation of tert -butyl alcohol and related xenobiotics by a methylotrophic bacterial isolate. Appl Microbiol Biotechnol 55:369–373 [CrossRef]
    [Google Scholar]
  28. Ramana Ch. V., Sasikala Ch., Arunasri K., Anil Kumar P., Srinivas T. N., Shivaji S., Gupta P., Süling J., Imhoff J. F. 2006; Rubrivivax benzoatilyticus sp. nov., an aromatic, hydrocarbon-degrading purple betaproteobacterium. Int J Syst Evol Microbiol 56:2157–2164 [CrossRef]
    [Google Scholar]
  29. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7
    [Google Scholar]
  30. Rohwerder T., Breuer U., Benndorf D., Lechner U., Müller R. H. 2006; The alkyl tert butyl ether intermediate 2-hydroxyisobutyrate is degraded via a novel cobalamin-dependent mutase pathway. Appl Environ Microbiol 72:4128–4135 [CrossRef]
    [Google Scholar]
  31. Siering P. L., Ghiorse W. C. 1996; Phylogeny of the Sphaerotilus-Leptothrix group inferred from morphological comparisons, genomic fingerprinting, and 16S ribosomal DNA sequence analyses. Int J Syst Bacteriol 46:173–182 [CrossRef]
    [Google Scholar]
  32. Spring S., Kämpfer P., Ludwig W., Schleifer K. H. 1996; Polyphasic characterization of the genus Leptothrix : New descriptions of Leptothrix mobilis sp. nov. and Leptothrix discophora sp. nov. nom. rev. and emended description of Leptothrix cholodnii emend. Syst Appl Microbiol 19634–643 [CrossRef]
    [Google Scholar]
  33. Stackebrandt E. 2006; Defining taxonomic ranks. In The Prokaryotes , vol. 1, Symbiotic Associations, Biotechnology, Applied Microbiology pp  29–57 Edited by Dworkin M., Falkow S., Roseberg E., Schleifer K.-H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  34. Suyama T., Shigematsu T., Takaichi S., Nodasaka Y., Fujikawa S., Hosoya H., Tokiwa Y., Kanagawa T., Hanada S. 1999; Roseateles depolymerans gen. nov., sp. nov. a new bacteriochlorophyll a -containing obligate aerobe belonging to the β -subclass of the Proteobacteria . Int J Syst Bacteriol 49:449–457 [CrossRef]
    [Google Scholar]
  35. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  36. Wen A., Fegan M., Hayward C., Chakraborty S., Sly L. I. et al. 1999; Phylogenetic relationships among members of the Comamonadaceae , and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al 1987. gen. nov., comb. nov.. Int J Syst Bacteriol 49:567–576 [CrossRef]
    [Google Scholar]
  37. White D. C., Ringelberg D. B. 1998; Signature lipid biomarker analysis. In Techniques in Microbial Ecology pp  255–272 Edited by Burlage R. S., Atlas R., Stahl D., Geesey G., Saylor G. New York: Oxford University Press;
    [Google Scholar]
  38. Willems A., Gilles M., de Ley J. 1991; Transfer of Rhodocyclus gelatinosus to Rubrivivax gelatinosus gen nov., comb. nov and phylogenetic relationships with Leptothrix , Sphaerotilus natans , Pseudomonas saccharophila , and Alcaligenes latus . Int J Syst Evol Microbiol 4165–73
    [Google Scholar]
  39. Xie C. H., Yokota A. 2005; Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 55:2419–2425 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64663-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64663-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error