1887

Abstract

Several strains of the fungus harbour endosymbiotic bacteria for the production of the causal agent of rice seedling blight, rhizoxin, and the toxic cyclopeptide rhizonin. and isolated endobacteria were selected for freeze–fracture electron microscopy, which allowed visualization of bacterial cells within the fungal cytosol by their two parallel-running envelope membranes and by the fine structure of the lipopolysaccharide layer of the outer membrane. Two representatives of bacterial endosymbionts were chosen for phylogenetic analyses on the basis of full 16S rRNA gene sequences, which revealed that the novel fungal endosymbionts formed a monophyletic group within the genus . Inter-sequence similarities ranged from 98.94 to 100 %, and sequence similarities to members of the group, the closest neighbours, were 96.74–97.38 %. In addition, the bacterial strains were distinguished from their phylogenetic neighbours by their fatty acid profiles and other biochemical characteristics. The phylogenetic studies based on 16S rRNA gene sequence data, together with conclusive DNA–DNA reassociation experiments, strongly support the proposal that these strains represent two novel species within the genus , for which the names sp. nov. (type strain, HKI 454=DSM 19002=CIP 109453) and sp. nov. (type strain, HKI 456=DSM 19003=CIP 109454) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64660-0
2007-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/11/2583.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64660-0&mimeType=html&fmt=ahah

References

  1. Bianciotto V., Lumini E., Bonfante P., Vandamme P. 2003; Candidatus Glomeribacter gigasporarum’ gen. nov., sp. nov an endosymbiont of arbuscular mycorrhizal fungi. Int J Syst Evol Microbiol 53:121–124 [CrossRef]
    [Google Scholar]
  2. Boer W., Folman L. B., Summerbell R. C., Boddy L. 2005; Living in a fungal world: impact of soil bacterial niche development. FEMS Microbiol Rev 29:795–811 [CrossRef]
    [Google Scholar]
  3. Bonfante P. 2003; Plants, mycorrhizal fungi and endobacteria: a dialog among cells and genomes. Biol Bull 204:215–220 [CrossRef]
    [Google Scholar]
  4. Bramer C. O., Vandamme P., da Silva L. F., Gomez J. G. C., Steinbuchel A. 2001; Burkholderia sacchari sp. nov., a polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil. Int J Syst Evol Microbiol 51:1709–1713 [CrossRef]
    [Google Scholar]
  5. Brett P. J., DeSchazer D., Woods D. E. 1998; Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei -like species. Int J Syst Bacteriol 48:317–320 [CrossRef]
    [Google Scholar]
  6. Burkholder W. H. 1942; Three bacterial plant pathogens. Phytomonas caryophylli sp. n., Phytomonas alliicola sp. n. and Phytomonas manihotis (Artaud-Berthet and Bondar) Viégas. Phytopathology 32:141–149
    [Google Scholar]
  7. Caballero-Mellado J., Martínez-Aguilar L., Paredes-Valdez G., Estrada-de los Santos P. 2004; Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54:1165–1172 [CrossRef]
    [Google Scholar]
  8. Coenye T., Vandamme P. 2003; Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729 [CrossRef]
    [Google Scholar]
  9. Coenye T., LiPuma J. J., Henry D., Hoste B., Vandemeulebroecke K., Gillis M., Speert D. P., Vandamme P. 2001a; Burkholderia cepacia genomovar VI, a new member of the Burkholderia cepacia complex isolated from cystic fibrosis patients. Int J Syst Evol Microbiol 51:271–279
    [Google Scholar]
  10. Coenye T., Laevens S., Willems A., Ohlen M., Hannant W., Govan J. R. W., Gillis M., Falsen E., Vandamme P. 2001b; Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int J Syst Evol Microbiol 51:1099–1107 [CrossRef]
    [Google Scholar]
  11. Coenye T., Mahenthiralingam E., Henry D., LiPuma J. J., Laevens S., Gillis M., Speert D. P., Vandamme P. 2001c; Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int J Syst Evol Microbiol 51:1481–1490
    [Google Scholar]
  12. Coenye T., Vandamme P., Govan J. R. W., LiPuma J. J. 2001d; Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39:3427–3436 [CrossRef]
    [Google Scholar]
  13. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press;
    [Google Scholar]
  14. Goris J., De Vos P., Caballero-Mellado J., Park J., Falsen E., Quensen J. F. III, Tiedje J. M., Vandamme P. 2004; Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov. Int J Syst Evol Microbiol 54:1677–1681 [CrossRef]
    [Google Scholar]
  15. Huelsenbeck J. P., Ronquist F. 2001; mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755 [CrossRef]
    [Google Scholar]
  16. Huelsenbeck J. P., Ronquist F., Nielsen R., Bollback J. P. 2001; Bayesian interface of phylogeny and its impact on evolutionary biology. Science 294:2310–2314 [CrossRef]
    [Google Scholar]
  17. Lim Y. W., Baik K. S., Han S. K., Kim S. B., Bae K. S. 2003; Burkholderia sordidicola sp. nov., isolated from the white-rot fungus Phanerochaete sordida . Int J Syst Evol Microbiol 53:1631–1636 [CrossRef]
    [Google Scholar]
  18. Lumini E., Ghignone S., Bianciotto V., Bonfante P. 2006; Endobacteria or bacteria endosymbionts? To be or not to be. New Phytol 170:205–208 [CrossRef]
    [Google Scholar]
  19. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358
    [Google Scholar]
  20. Partida-Martinez L. P., Hertweck C. 2005; Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888 [CrossRef]
    [Google Scholar]
  21. Partida-Martinez L. P., Hertweck C. 2007; A gene cluster encoding rhizoxin biosynthesis in ‘ Burkholderia rhizoxina ’, the bacterial endosymbiont of the fungus Rhizopus microsporus . ChemBioChem 8:41–45 [CrossRef]
    [Google Scholar]
  22. Partida-Martinez L. P., Flores de Looss C., Ishida K., Ishida M., Roth M., Buder K., Hertweck C. 2007a; Rhizonin, the first mycotoxin isolated from the zygomycota, is not a fungal metabolite but is produced by bacterial endosymbionts. Appl Environ Microbiol 73:793–797 [CrossRef]
    [Google Scholar]
  23. Partida-Martinez L. P., Monajembashi S., Greulich K. O., Hertweck C. 2007b; Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr Biol 17:773–777 [CrossRef]
    [Google Scholar]
  24. Reis V. M., Estrada-de los Santos P., Tenorio-Salgado S., Vogel J., Stoffels M., Guyon S., Mavingui P., Baldani V. L. D., Schmid M. other authors 2004; Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54:2155–2162 [CrossRef]
    [Google Scholar]
  25. Scherlach K., Partida-Martinez L. P., Dahse H. M., Hertweck C. 2006; Antimitotic rhizoxin derivatives from a cultured bacterial endosymbiont of the rice pathogenic fungus Rhizopus microsporus . J Am Chem Soc 128:11529–11536 [CrossRef]
    [Google Scholar]
  26. Schmitt I., Lumbsch T. 2004; Molecular phylogeny of the Pertusariaceae supports secondary chemistry as an important systematic character set in lichen-forming ascomycetes. Mol Phylogenet Evol 33:43–55 [CrossRef]
    [Google Scholar]
  27. Sessitsch A., Coenye T., Sturz A. V., Vandamme P., Barka E. A., Salles J. F., Van Elsas J. D., Faure D., Reiter B. other authors 2005; Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 55:1187–1192 [CrossRef]
    [Google Scholar]
  28. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology . pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  29. Swofford D. L. 2003 paup*: phylogenetic analysis using parsimony (*and other methods Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  31. Van Oevelen S., De Wachter R., Vandamme P., Robbrecht E., Prinsen E. 2002; Identification of the bacterial endosymbionts in leaf galls of Psychotria (Rubiaceae, angiosperms) and proposal of ‘ Candidatus Burkholderia kirkii’sp. nov. Int J Syst Evol Microbiol 52:2023–2027 [CrossRef]
    [Google Scholar]
  32. Van Oevelen S., De Wachter R., Vandamme P., Robbrecht E., Prinsen E. 2004; Candidatus Burkholderia calva’ and ‘ Candidatus Burkholderia nigropunctata’ as leaf gall endosymbionts of African Psychotria . Int J Syst Evol Microbiol 54:2237–2239 [CrossRef]
    [Google Scholar]
  33. Viallard V., Poirier I., Cournoyer B., Haurat J., Wiebkin S., Ophel-Keller K., Balandreau J. 1998; Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of[ Pseudomonas ] phenazinium , [ Pseudomonas ] pyrrocinia and [ Pseudomonas ] glathei as Burkholderia .. Int J Syst Bacteriol 48:549–563 [CrossRef]
    [Google Scholar]
  34. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275 [CrossRef]
    [Google Scholar]
  35. Yang H. C., Im W. T., Kim K. K., An D. S., Lee S. T. 2006; Burkholderia terrae sp. nov., isolated from a forest soil. Int J Syst Evol Microbiol 56:453–457 [CrossRef]
    [Google Scholar]
  36. Zhang H., Hanada S., Shigematsu T., Shibuya K., Kamagata Y., Kanagawa T., Kurane R. 2000; Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int J Syst Evol Microbiol 50:743–749 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64660-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64660-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error