gen. nov., sp. nov., a thermophilic sulfate-reducer isolated from a geothermal underground mine in Japan Free

Abstract

A thermophilic, Gram-positive, endospore-forming, sulfate-reducing bacterial strain, designated RL80JIV, was isolated from a geothermally active underground mine in Japan. Cells were rod-shaped and motile. The temperature and pH ranges for growth were 61–80 °C (optimum at 69–72 °C) and pH 6.4–7.9 (optimum at pH 6.8–7.3), and the strain tolerated up to 0.5 % NaCl. Strain RL80JIV utilized sulfate, sulfite, thiosulfate and elemental sulfur as electron acceptors. Electron donors utilized were H in the presence of CO, and carboxylic acids. Fermentative growth occurred on lactate and pyruvate. The cell wall contained -diaminopimelic acid and the major respiratory isoprenoid quinone was menaquinone MK-7. Major whole-cell fatty acids were iso-C, iso-C and C. Strain RL80JIV was found to be affiliated with the thiosulfate-reducer DSM 14490 (90.9 % 16S rRNA gene sequence similarity) and with the sulfate-reducer DSM 10259 (90.0 % similarity). Strain RL80JIV is therefore considered to represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is RL80JIV (=DSM 16036=JCM 13928).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64655-0
2007-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/1/98.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64655-0&mimeType=html&fmt=ahah

References

  1. Beeder J., Nilsen R. K., Rosnes J. T., Torsvik T., Lien T. 1994; Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl Environ Microbiol 60:1227–1231
    [Google Scholar]
  2. Beeder J., Torsvik T., Lien T. 1995; Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164:331–336 [CrossRef]
    [Google Scholar]
  3. Campbell L. L., Postgate J. R. 1965; Classification of the spore-forming sulfate-reducing bacteria. Bacteriol Rev 29:359–363
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  5. Castro H. F., Williams N. H., Ogram A. 2000; Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9
    [Google Scholar]
  6. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354
    [Google Scholar]
  7. Daumas S., Cord-Ruwisch R., Garcia J. L. 1988; Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie van Leeuwenhoek 54:165–178 [CrossRef]
    [Google Scholar]
  8. Goorissen H. P., Boschker H. T. S., Stams A. J. M., Hansen T. A. 2003; Isolation of thermophilic Desulfotomaculum strains with methanol and sulfite from solfataric mud pools, and characterization of Desulfotomaculum solfataricum sp. nov. Int J Syst Evol Microbiol 53:1223–1229 [CrossRef]
    [Google Scholar]
  9. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [CrossRef]
    [Google Scholar]
  10. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenesis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  11. Heimbrook M. E., Wang W. L. L., Campbell G. 1989; Staining bacterial flagella easily. J Clin Microbiol 27:2612–2615
    [Google Scholar]
  12. Henry E. A., Devereux R., Maki J. S., Gilmour C. C., Woese C. R., Mandelco L., Schauder R., Remsen C. C., Mitchell R. 1994; Characterization of a new thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowstonii , gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch Microbiol 161:62–69 [CrossRef]
    [Google Scholar]
  13. Kaksonen A. H., Plumb J. J., Robertson W. J., Franzmann P. D., Gibson J. A. E., Puhakka J. A. 2004; Culturable diversity and community fatty acid profiling of sulfate-reducing fluidized-bed reactors treating acidic, metal-containing wastewater. Geomicrobiol J 21:469–480 [CrossRef]
    [Google Scholar]
  14. Kaksonen A. H., Plumb J. J., Robertson W. J., Spring S., Schumann P., Franzmann P. D., Puhakka J. A. 2006a; Novel thermophilic sulfate-reducing bacteria from a geothermally active underground mine in Japan. Appl Environ Microbiol 72:3759–3762 [CrossRef]
    [Google Scholar]
  15. Kaksonen A. H., Spring S., Schumann P., Kroppenstedt R. M., Puhakka J. A. 2006b; Desulfotomaculum thermosubterraneum sp. nov., a thermophilic sulfate-reducer isolated from an underground mine located in a geothermally active area. Int J Syst Evol Microbiol 56:2603–2608 [CrossRef]
    [Google Scholar]
  16. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  17. Karnauchow T. M., Koval S. F., Jarrell K. F. 1992; Isolation and characterization of 3 thermophilic anaerobes from a St. Lucia hot spring. Syst Appl Microbiol 15:296–310 [CrossRef]
    [Google Scholar]
  18. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics pp  173–179 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  19. Liu Y., Karnauchow T. M., Jarrell K. F., Balkwill D. L., Drake G. R., Ringelberg D., Clarno R., Boone D. R. 1997; Description of two new thermophilic Desulfotomaculum spp., Desulfotomaculum putei sp. nov., from a deep terrestrial subsurface, and Desulfotomaculum luciae sp. nov., from a hot spring. Int J Syst Bacteriol 47:615–621 [CrossRef]
    [Google Scholar]
  20. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum , sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst Appl Microbiol 16:244–251 [CrossRef]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  22. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  23. Min H., Zinder S. H. 1990; Isolation and characterization of a thermophilic sulfate-reducing bacterium Desulfotomaculum thermoacetoxidans sp. nov. Arch Microbiol 153:399–404 [CrossRef]
    [Google Scholar]
  24. Monciardini P., Cavaletti L., Schumann P., Rohde M., Donadio S. 2003; Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria . Int J Syst Evol Microbiol 53:569–576 [CrossRef]
    [Google Scholar]
  25. Mori K., Hanada S., Maruyama A., Marumo K. 2002; Thermanaeromonas toyohensis gen. nov., sp. nov., a novel thermophilic anaerobe isolated from a subterranean vein in the Toyoha Mines. Int J Syst Evol Microbiol 52:1675–1680 [CrossRef]
    [Google Scholar]
  26. Mori K., Kim H., Kakegawa T., Hanada S. 2003; A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense , gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 7:283–290 [CrossRef]
    [Google Scholar]
  27. Moussard H., L'Haridon S., Tindall B. J., Banta A., Schumann P., Stackebrandt E., Reysenbach A.-L., Jeanthon C. 2004; Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54:227–233 [CrossRef]
    [Google Scholar]
  28. Nazina T. N., Ivanova A. E., Kanchaveli L. P., Rozanova E. P. 1989; A new sporeforming thermophilic methylotrophic sulfate-reducing bacterium, Desulfotomaculum kuznetsovii sp. nov. Microbiology (English translation of Mikrobiologiia ) 57659–663
    [Google Scholar]
  29. Nilsen R. K., Torsvik T., Lien T. 1996; Desulfotomaculum thermocisternum sp. nov., a sulfate-reducer isolated from a hot North Sea oil reservoir. Int J Syst Bacteriol 46:397–402 [CrossRef]
    [Google Scholar]
  30. Rees G. N., Grassia G. S., Sheehy A. J., Dwivedi P. P., Patel B. K. C. 1995; Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45:85–89 [CrossRef]
    [Google Scholar]
  31. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behaviour of the isomers of α , ϵ -diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846 [CrossRef]
    [Google Scholar]
  32. Rosnes J. T., Torsvik T., Lien T. 1991; Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl Environ Microbiol 57:2302–2307
    [Google Scholar]
  33. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:1–6
    [Google Scholar]
  34. Stookey L. L. 1970; Ferrozine – a new spectrophotometric reagent for iron. Anal Chem 42:779–781 [CrossRef]
    [Google Scholar]
  35. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  36. Tasaki M., Kamagata Y., Nakamura K., Mikami E. 1991; Isolation and characterization of a thermophilic benzoate-degrading, sulfate-reducing bacterium, Desulfotomaculum thermobenzoicum sp. nov. Arch Microbiol 155:348–352
    [Google Scholar]
  37. Zeikus J. G., Dawson M. A., Thompson T. E., Ingvorsen K., Hatchikian E. C. 1983; Microbial ecology of volcanic sulfidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. J Gen Microbiol 129:1159–1169
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64655-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64655-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed