1887

Abstract

A facultatively anaerobic, halotolerant, moderately thermophilic and non-sporulating bacterium, designated strain 10C, was isolated from deep-sea hydrothermal vent samples collected on the 13° N East Pacific Rise at a depth of approximately 2600 m. Cells of strain 10C were Gram-positive, motile rods, and grew optimally at 45 °C (range 12–49 °C), pH 7.0 (range pH 5.5–9.5) and 0–2 % NaCl (range 0–11 %). (+)--Lactate was the main organic acid detected from carbohydrate fermentation with traces of formate, acetate and ethanol. Strain 10C was catalase-positive, oxidase-negative and reduced nitrate to nitrite under anaerobic conditions. The DNA G+C content was 50.4 mol%. Its closest phylogenetic relatives were TF-16 and TF-80 (16S rRNA gene sequence similarity >99 %). However, strain 10C differed genotypically from these two species as indicated by DNA–DNA relatedness data. Therefore, on the basis of phenotypic, genotypic and phylogenetic characteristics, strain 10C is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 10C (=CCUG 50949=DSM 17289).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64639-0
2007-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/287.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64639-0&mimeType=html&fmt=ahah

References

  1. Alain K., Quérellou J., Lesongeur F., Pignet P., Crassous P., Raguénès G., Cueff V., Cambon-Bonavita M. A. 2002a; Caminibacter hydrogenophilus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium isolated from an East-Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323 [CrossRef]
    [Google Scholar]
  2. Alain K., Pignet P., Zbinden M., Quillevere M., Duchiron F., Donval J. P., Lesongeur F., Raguenes G., Crassous P. other authors 2002b; Caminicella sporogenes gen. nov., sp. nov., a novel thermophilic spore-forming bacterium isolated from an East-Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1621–1628 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit ribosomal RNA sequences. Lett Appl Microbiol 13:202–206
    [Google Scholar]
  5. Balch W. E., Fox G. E., Magrum R. J., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  6. Baross J. A., Deming J. W. 1995; Growth at high temperature: isolation and taxonomy, physiology, ecology. In The Microbiology of Deep-Sea Hydrothermal Vents pp  169–217 Edited by Karl D. M. Boca Raton, FL: CRC Press;
    [Google Scholar]
  7. Ben Dhia-Thabet O., Fardeau M.-L., Joulian C., Thomas P., Hamdi M., Garcia J.-L., Ollivier B. 2004; Clostridium tunisiense sp. nov., a new proteolytic, sulfur-reducing bacterium isolated from an olive mill wastewater contaminated by phosphogypse. Anaerobe 10:185–190 [CrossRef]
    [Google Scholar]
  8. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F. F., Rapp B. A., Wheeler D. L. 1999; GenBank. Nucleic Acids Res 27:12–17 [CrossRef]
    [Google Scholar]
  9. Bowers T. S., Campbell A. C., Mesures C. I., Spivack A. J., Khadem M., Edmond J. M. (1988); Chemical controls on the composition of vent fluids at 13° N, 11° N and 21° N, East Pacific Rise. J Geophys Res 93:4522–4536 [CrossRef]
    [Google Scholar]
  10. Brisbarre N., Fardeau M.-L., Cueff V., Cayol J. L., Barbier G., Cilia V., Ravot G., Thomas P., Garcia J. L., Ollivier B. 2003; Clostridium caminithermale sp. nov., a slightly halophilic and moderately thermophilic bacterium isolated from an Atlantic deep-sea hydrothermal chimney. Int J Syst Evol Microbiol 53:1043–1049 [CrossRef]
    [Google Scholar]
  11. Campbell B. J., Jeanthon C., Kotska J. E., Luther G. W. III, Cary S. C. 2001; Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67:4566–4572 [CrossRef]
    [Google Scholar]
  12. Cayol J.-L., Ollivier B., Soh A. L. A., Fardeau M. L., Ageron E., Grimont P. A. D., Prensier G., Guezennec J., Magot M., Garcia J. L. 1994; Haloincola saccharolytica subsp. senegalensis subsp. nov. isolated from the sediments of a hypersaline lake, and emended description of Haloincola saccharolytica . Int J Syst Bacteriol 44:805–811 [CrossRef]
    [Google Scholar]
  13. Collins M. D., Lund B. M., Farrow J. A. E., Schleifer K. H. 1983; Chemotaxonomic study of an alkalophilic bacterium, Exiguobacterium aurantiacum gen. nov. sp. nov.. J Gen Microbiol 129:2037–2042
    [Google Scholar]
  14. Edmond J. M., Von Damm K. L. 1985; Chemistry of ridge crest hot springs. Biol Soc Wash Bull 6:43–47
    [Google Scholar]
  15. Fardeau M.-L., Cayol J.-L., Magot M., Ollivier B. 1993; H2 oxidation in the presence of thiosulfate, by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol Lett 113:327–332 [CrossRef]
    [Google Scholar]
  16. Farrow J. A. E., Wallbanks S., Collins M. D. 1994; Phylogenetic interrelationships of round spore-forming bacilli containing cell walls based on lysine and the non-spore-forming genera Caryophanon , Exiguobacterium , Kurthia , and Planococcus . Int J Syst Bacteriol 44:74–82 [CrossRef]
    [Google Scholar]
  17. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  18. Frühling A., Schumann P., Hippe H., Straübler B., Stackebrandt E. 2002; Exiguobacterium undae sp. nov. and Exiguobacterium antarcticum sp. nov. Int J Syst Evol Microbiol 52:1171–1176 [CrossRef]
    [Google Scholar]
  19. Götz D., Banta A., Beveridge T. J., Rushdi A. I., Simoneit B. R. T., Reysenbach A. L. 2002; Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov. two novel thermophilic hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359 [CrossRef]
    [Google Scholar]
  20. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov. a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  21. Hall T. A. 1999; bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  22. Hungate R. E. 1969; A roll-tube method for the cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  23. Jeanthon C. 2000; Molecular ecology of hydrothermal vent microbial communities. Antonie van Leeuwenhoek 77:117–133 [CrossRef]
    [Google Scholar]
  24. Jeanthon C., L'Haridon S., Reysenbach A. L., Vernet M., Messner P., Sleytr U. W., Prieur D. 1998; Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:913–919 [CrossRef]
    [Google Scholar]
  25. Jones D., Keddie R. M. 1986; Genus Brevibacterium Breed 1953. In Bergey's Manual of Systematic Bacteriology vol 2 pp  1301–1313 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  26. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  211–232 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  27. Juniper S. K., Sarrizan J. 1995; Interaction of vent biota and hydrothermal deposits: present evidence and future experimentation. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions pp  178–193 Edited by Humpris S. E., Zierenberg R. A., Mullineaux L. S., Thomson R. E. Washington, DC: American Geophysical Union;
    [Google Scholar]
  28. Karl D. M. 1995; Ecology of free-hydrothermal vent microbial communities. In The Microbiology of Deep-Sea Hydrothermal Vents pp  35–124 Edited by Karl D. M. Boca Raton, FL: CRC Press Inc;
    [Google Scholar]
  29. Kim I. J., Lee M. H., Jung S. Y., Song J. J., Oh T. K., Yoon J. H. 2005; Exiguobacterium aestuarii sp. nov. and Exiguobacterium marinum sp. nov., isolated from tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55:885–889 [CrossRef]
    [Google Scholar]
  30. L'Haridon S., Cilia V., Messner P., Raguénès G., Gambacorta A., Sleytr U. W., Prieur D., Jeanthon C. 1998; Desulfurobacterium thermolithotrophicum gen. nov., sp. nov., a novel autotrophic, sulfur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:701–711 [CrossRef]
    [Google Scholar]
  31. Lopez-Cortes A., Schumann P., Pukall R., Stackebrandt E. 2006; Exiguobacterium mexicanum sp. nov. and Exiguobacterium artemiae sp. nov., isolated from the brine shrimp Artemia franciscana . Syst Appl Microbiol 29:183–190 [CrossRef]
    [Google Scholar]
  32. Luther G. W., Glazer B. T., Hohmann L., Popp J. I., Taillefert M., Rozan T. F., Brendel P. J., Theberg S. M., Nuzzio D. B. 2001a; Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes: polysulfides as a special case in sediments, microbial mats and hydrothermal vent waters. J Environ Manage 62:61–66
    [Google Scholar]
  33. Luther G. W., Rozan T. F., Taillefert M., Nuzzio D. B., Di Meo C., Shank T. M., Lutz R. A., Cary S. C. 2001b; Chemical speciation drives hydrothermal vent ecology. Nature 410:813–816 [CrossRef]
    [Google Scholar]
  34. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N -heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70:151–160
    [Google Scholar]
  35. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M. 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  36. Michard G. F., Albarède A., Michard J. F., Minster J., Charlou L., Tan N. 1984; Chemistry of solutions from the 13° N East Pacific Rise hydrothermal site. Earth Planet Sci Lett 67:297–307 [CrossRef]
    [Google Scholar]
  37. Reysenbach A. L., Banta A., Boone D. R., Cary S. C., Luther G. W. 2000a; Microbial essentials at hydrothermal vents. Nature 404:835–836 [CrossRef]
    [Google Scholar]
  38. Reysenbach A. L., Longnecker K., Kirshtein J. 2000b; Novel bacterial and archaeal lineages from an in situ growth chamber deployed at the Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806 [CrossRef]
    [Google Scholar]
  39. Rodrigues D. F., Goris J., Vishnivetskaya T., Gilichinsky D., Thomashow M. F., Tiedje J. M. 2006; Characterization of Exiguobacterium isolates from the Siberian permafrost. Description of Exiguobacterium sibiricum sp nov.. Extremophiles 10:285–294 [CrossRef]
    [Google Scholar]
  40. Rozan T. F., Theberge S. M., Luther G. 2000; Quantifying elemental sulfur (S0), bisulfide (HS) and polysulfides () using a voltammetric method. Anal Chim Acta 415:175–184 [CrossRef]
    [Google Scholar]
  41. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:405–425
    [Google Scholar]
  42. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156
    [Google Scholar]
  43. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  44. Von Damm K. L., Edmond J. M., Mesures C. I., Grant B. 1985a; Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 49:213–229
    [Google Scholar]
  45. Von Damm K. L., Edmond J. M., Grant B., Mesures C. I., Walden B., Weiss R. F. 1985b; Chemistry of submarine hydrothermal solutions at 21° N, East Pacific Rise. Geochim Cosmochim Acta 49:2197–2220 [CrossRef]
    [Google Scholar]
  46. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  47. Wery N., Moricet J. M., Cueff V., Jean J., Pignet P., Lesongeur F., Cambon-Bonavita M.-A., Barbier G. 2001; Caloranaerobacter azorensis gen. nov., an anaerobic thermophilic bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:1789–1796 [CrossRef]
    [Google Scholar]
  48. Winker S., Woese C. R. 1991; A definition of the domain Archaea , Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 13:161–165 [CrossRef]
    [Google Scholar]
  49. Yumoto I., Hishinuma-Narisawa M., Hirota K., Shingyo T., Takebe F., Nodasaka Y., Matsuyama H., Hara I. 2004; Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity. Int J Syst Evol Microbiol 54:2013–2017 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64639-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64639-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error